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ABSTRACT 

The properties of higher-order statistics are becoming more and more thoroughly 

studied in the field of signal processing. One property of great interest is the fact that the 

cumulants of Gaussian signals disappear entirely at higher orders. Because many noise 

and interference signals have Gaussian distributions, this property offers the possibility 

that higher-order statistics may be useful in signal recovery or interference mitigation, 

which would be of great advantage in military communications, intelligence, or surveil- 

lance systems. This thesis examines some of the theory behind higher-order statistics, and 

discusses the estimation of third-order cumulant values for several random variable distri- 

butions. After a minimum sample size has been determined, the study progresses to the 

frequency domain for an examination of the bispectra of the distributions. The thesis then 

explores the bispectra of non-Gaussian signals in the presence of Gaussian noise, and 

concludes with recommendations for implementing signal processing systems which 

utilize higher-order statistics. 
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I. INTRODUCTION 

The use of higher-order statistics provides insight into signals which is not always 

available at lower orders. Additionally, Gaussian-distributed signals have the interesting 

characteristic of disappearing at higher orders. Because so much of the noise and inter- 

ference environment is Gaussian-distributed, higher-order statistics thus offer the promise 

of an additional method of noise reduction and interference mitigation. As communica- 

tions signals become more and more complex, any additional ability to reduce the effects 

of noise and interference will have a profound impact on communications, surveillance, 

and intelligence systems. 

A. THE NATURE AND UTILITY OF HIGHER-ORDER STATISTICS 
1. Introduction 

Traditionally, most of the procedures performed in statistical signal processing 

applications have been first- and second-order operations, i.e., the calculation of a signal's 

first- and second-order moments. Whereas the first-order moment of a signal is simply 

its mean, its second-order moment is the correlation of the signal with a time-delayed 

("lagged") copy of itself. This moment is also referred to as the signal's autocorrelation. 

The Fourier transform of the autocorrelation, in turn, produces the power spectral density 

(PSD) so familiar to signal engineers. By its nature the PSD is a second-order quantity. 

Recently, however, significant interest has been paid to higher-order statistical 

operations. Instead of merely correlating a signal with one time-delayed copy of itself, it 

is sometimes useful to correlate it with two or more such copies, at varying lags. These 

multiple-lag processes may also be operated on by Fourier transforms to produce, for 

example, three- or four-dimensional spectral displays (known as bispectra and trispectra, 

respectively, and more generally as polyspectra) in a manner similar to that of the tradi- 

tional PSD. 

Such higher-order techniques have typically been used less frequently than their 

second-order cousins in the signals world, partly because of the significantly greater 

amount of processing power required to compute them. However, recently such tech- 

niques have been the subject of increasing study and have found applications in such 
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disciplines as image processing, biological monitoring, and the modeling of wave 

phenomena [Ref. 11. 

The reason for such interest in higher-order statistics is that they provide informa- 

tion not always available through second-order techniques. Some such information 

includes the detection of nonlinearity; the preservation of phase relationships, and the 

measurement of a signal's deviation from Gaussianity. This last property is the result of 

the fact that the third- and fourth-order cumulants of Gaussian signals are zero. This, in 

turn, suggests that the third- or fourth-order cumulant of a signal can be used to quantify 

just how "non-Gaussian" a signal is and further suggests that higher-order statistical prop- 

erties could be used to generate a filtering algorithm to remove unwanted Gaussian 

elements (noise or interference) from a signal. The feasibility of such a filter is the 

impetus behind this thesis. 

This thesis initially discusses some of the theory behind higher-order statistics, 

particularly as it applies to filtering away Gaussian signal components. It then details the 

steps taken towards constructing such a filter. These steps are to determine the signal 

sample length necessary to provide accurate cumulant estimates for various signal types 

(Gaussian and non-Gaussian), to examine the performance of bispectrum estimation for 

Gaussian and non-Gaussian signals, and to examine the ability to distinguish a non-Gaus- 

sian signal from additive Gaussian noise. 

2. A Brief Introduction to the Theory of Higher-Order Statistics 
a. Moments 

The nth-order moment of a real, stationary sequence X(t) with PDFf,(x) is 
m 

given by E { X" } = 

and where x, as per probability convention, denotes a specific realization of the random 

variable X. For n = 1 (i.e., first-order), the moment is simply the expected value ofXand 

is commonly known as the mean, denoted by m, = E{X). For n = 2 (i.e., second-order), 

the moment is the autocorrelation, which indicates how well the sequence correlates with 

a time-lagged version of itself. 

X" f,(x)dx for n = 1,2 ,3  ..., where E{ } denotes expectation 
-m 

Moments of arbitrary order may be calculated via a distribution's moment- 
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generating function M ,  ( w ) =E { ex } = 9 exw f , (x) dx . The n*-order moment of a 

signal is generated by differentiating M,(w) n times, and setting w = 0. Thus the mean of a 

signal may be calculated as rn, = E{X) = M;(O), where the single prime mark indicates 

the first differential of M,(ci)). Moments of higher order may be generated similarly [Ref. 

-m 

21. 
Because the concept of signal lag is frequently of interest in the signals 

world, however, it is frequently used to define second- and higher-order moments. Here, 

lags will be denoted by z,, and the d'-order moment written as 

mi( z p 2  ;.. zn_, )=E{X(t )X( t+Z1)  ... X(t+s , )}  * (1) 

Such notation makes it more obvious, for example, that the second-order moment is the 

autocorrelation when it is written as m2"( zl) = E {X(t)X(t + TI)}. 

6. Cumulants 

Although moments of order greater than two are indeed higher-order 

statistics, frequently cumulants, rather than moments, are used. Cumulants may be calcu- 

lated in a manner analogous to that of moments; the cumulant-generatingfunction is 

produced by talung the natural logarithm of the moment-generating function: 

C,(o) = ln(M,(o)). Differentiating C,(o) n times and setting ci) = 0, as with the moment- 

generating function, produces a signal's n*-order cumulant. 

However, if the study is limited to order four and below (as it is here), an 

equally valid but more intuitive representation (for purposes of this thesis) is 

(2) 
G c: ( T 1, T 2 ' . . .  2,-1 )=mi ( Y Z 2 , . . .  Z(n-l))-rnn ( z 1, Z2, ... T + l ) )  

where c,"(z~, 72,...~n-1) is the n*-order cumulant of the random variable x; ITZ~(T~,Z~,...T~-~) is 

the n*-order moment of the random variable x; and mnG(zl, 72, ... 7n-1) is the n*-order 

moment of a Gaussian random variable that has the same first- and second-order 
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produced by taking the natural logarithm of the moment-generating function: 

Cjlsa) = IniMxiio)). Differentiating CX(Q)) n times and setting co = 0, as with the moment- 

generating function, produces a signal's n^-order cumulant. 

However, if the study is limited to order four and below (as it is here), an 

equally vahd but more intuitive representation (for purposes of this thesis) is 

<(^P^2'-^„-l) = '«»(^l'^2'-^(„-l))-'««(^l'^2'-^(„-l)) (2) 

where C/(TI, X2,...i;ii-i) is the n*-order cumulant of the random variables; w/('Ci,T2,-Xn-i) is 

the n*-order moment of the random variable x; and m„°(Ti, Xz, ...Xni) is the n*-order 

moment of a Gaussian random variable that has the same first- and second-order 

moments as x. This notation makes it clear that cumulants may be used to measure the 

Gaussianity, or lack thereof, of a random variable. It is also a convenient way of illus- 

trating a significant property of cumulants; namely that the cumulant of a Gaussian- 

distributed signal is identically zero. (Note that even though the alternative representa- 



tion above only applies to third- and fourth-order statistics, the @-order cumulant of a 

Gaussian-distributed signal is zero for any value of n greater than two.) This is one of the 

major justifications for using cumulants rather than moments: if it is desired to measure 

deviation from Gaussianity, then third- and fourth-order cumulants are ideal. Another 

justification is that the higher-order cumulants of white noise are multidimensional 

impulse functions, which is not necessarily the case with higher-order moments. 

However, it should be pointed out that for zero-mean processes, such as those used in this 

study, the third-order moment and third-order cumulant are equal, so this last justification 

becomes somewhat moot [Ref. 3,4]. 

Before concluding this introduction of moments and cumulants, two addi- 

tional terms should be mentioned. As discussed above, the first-order moment is the mean 

of a random variable and the second-order moment is its variance. We may also use 

higher-order statistics for the random variables, known as skewness and kurtosis. Skew- 

ness is the third-order cumulant with z1= 2 2  = 0, while kurtosis is the fourth-order cumu- 

lant with z1 = z2 = 73 = 0. To use a physical analogy, let the PDF represent a mass 

distribution hnction. In this case, the mean is simply the location of the center of gravity 

of the mass; the variance is a measure of how the mass is dispersed from its center of 

gravity; the skewness is a measure of how symmetric the mass is about its mean value 

(i.e., whether it is "skewed" to the right or the left of center-if it is symmetric about the 

mean then its skewness is zero); and the kurtosis is a measure of the flatness or excess 

about the mean. These terms are particularly significant because some higher-order signal 

processing applications require zero skewness, or zero kurtosis, in order to be effective. 

In the case of this thesis, however, the only requirement is a mean of zero. 

c. Spectra and Polyspectra 

A few introductory comments need to be made about polyspectra, the 

higher-order analogs of a signal's power spectral density. As with second-order statistics, 

the calculation of a signal's higher-order spectrum frequently allows insight into the 

nature of the signal that may not be possible in the time domain. If nothing else, it can 

provide a more intuitive, visual signal representation. 

When the Fourier transform is taken of a second-order cumulant (the 
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provide a more intuitive, visual signal representation. 
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covariance), the result is the power spectrum. Likewise, when the Fourier transform of 

the third- and fourth-order cumulants are generated, the results are the bispectrum and 

trispectrum, respectively. The bispectrum is a function plotted versus two frequency axes 

and is frequently written as CX3(co1,02). (The presence of two dependent axes results in 

the somewhat confusing term "bispectrum" for n=3.) In a similar manner, the trispectrum 

is a function of three variables denoted as Cx4(o~,02,03) and usually plotted as a three- 

dimensional contour with one axis variable held constant. Both the bispectrum and tris- 

pectrum are complex-valued functions, so magnitude and phase must be plotted sepa- 

rately. 

3. Experiment Objectives 

With the above theory in mind, the purpose of this thesis was to study third-order 

cumulants and bispectra. Specifically, the intent was to examine the effects of various 

signal parameters, as well as of the various parameters involved in bispectral estima- 

tion. It was further desired to study the effects of filtering (to change a signal from white 

to colored), and of adding various levels of noise to the environment. 

These different aspects of cumulant and bispectral estimation, would be very 

useful in any attempt to develop a practical signal processing application using higher- 

order statistics. One example might be that of an adaptive filter; because most noise, and 

many interferers, seen in the signal world are Gaussian, the ability to suppress Gaussian 

signal elements with a limited effect on a non-Gaussian information-bearing signal would 

be of obvious benefit. To construct such a filter, however, would also require an appre- 

ciation not only of the parameters required to generate higher-order statistics, but also of 

the effects of examining the higher-order statistics of various non-Gaussian signal types. 

This potential application is one motivation for the study performed here. 

The different factors discussed here were investigated using MATLAB and its 

Higher-Order Spectral Analysis (HOSA) toolbox [Ref. 61. MATLAB was used to 

generate sample data sets, to calculate estimates of the data's third-order cumulants and 

bispectra, and to simulate operations on the data. 

Chapter I1 describes the generation of the initial datasets, and the estimates of 

their third-order cumulants. The results of the estimations were compared to their theo- 
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covariance), the result is the power spectrum. Likewise, when the Fourier transform of 

the third- and fourth-order cumulants are generated, the results are the bispectrum and 

trispectrum, respectively. The bispectrum is a function plotted versus two frequency axes 
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signal parameters, as well as of the various parameters involved in bispectral estima- 

tion. It was further desired to study the effects of filtering (to change a signal from white 

to colored), and of adding various levels of noise to the environment. 

These different aspects of cumulant and bispectral estimation, would be very 

useful in any attempt to develop a practical signal processing application using higher- 

order statistics. One example might be that of an adaptive filter; because most noise, and 

many interferers, seen in the signal world are Gaussian, the ability to suppress Gaussian 

signal elements with a limited effect on a non-Gaussian information-bearing signal would 

be of obvious benefit. To construct such a filter, however, would also require an appre- 

ciation not only of the parameters required to generate higher-order statistics, but also of 

the effects of examining the higher-order statistics of various non-Gaussian signal types. 

This potential application is one motivation for the study performed here. 

The different factors discussed here were investigated using MATLAB and its 

Higher-Order Spectral Analysis (HOSA) toolbox [Ref. 6]. MATLAB was used to 

generate sample data sets, to calculate estimates of the data's third-order cumulants and 

bispectra, and to simulate operations on the data. 

Chapter II describes the generation of the initial datasets, and the estimates of 

their third-order cumulants. The results of the estimations were compared to their theo- 



retical results, anG the difference between the two was used to determine the signal 

lengths necessary to produce consistent third-order cumulant estimates. 

Chapter I11 describes the next step in the experiment. The study of bispectra, 

rather than simply of third-order cumulants, introduces additional considerations, such as 

segmentation and averaging of the data. This Chapter records the effects of varying 

different parameters, such as the number of lags computed and the length of the direct 

Fourier transform (DFT) used, on the bispectra. 

Chapter IV explores the bispectral estimation in a slightly more realistic environ- 

ment, that of non-Gaussian signals in additive white Gaussian noise. 

Chapter V offers a summary and conclusions, and projects future steps towards 

developing signal processing applications using higher-order statistics. 

Appendix A is a catalog of the plots produced by the procedure of Chapter 11, as 

the mean, variance, and third-order cumulants were examined while the experimental 

ensemble length was increased. 

Appendix B is a catalog of the plots produced by the procedure of Chapter 111, as 

the bispectra of white and colored signals were generated. The plots in this Chapter show 

the effects of varying the lag argument and DFT length in the MATLAB bispeci function. 

Appendix C is a catalog of the plots produced by the procedure of Chapter IV, as 

the bispectra of colored signals plus additive white Gaussian noise were generated. 

Appendix D is a derivation of a general expression for the third-order cumulant of 

a zero-mean, independent and identically-distributed dataset. 

Appendix E contains the derivations of the theoretical third-order cumulants for 

the four distributions examined here. 

Appendix F is a flow diagram for the MATLAB code used in the procedure of 

Chapter 11. 

Appendix G contains the actual MATLAB code used here. It includes simple 

scripts used to generate the data for Chapters I1 and 111, as well as a function called 

rpiid-var which was used to create random data with various distributions and variances. 
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rpiid_var which was used to create random data with various distributions and variances. 



11. NECESSARY SIGNAL SAMPLE LENGTH WHEN ESTIMATING THIRD- 
ORDER CUMULANTS 

As mentioned in the introduction, a recurring limitation on the use of higher-order 

statistics in signal processing has been the significant computational burden involved. 

Therefore, an early step in this study was to determine the size of signal samples that 

would be required. Specifically, the purpose of this first step was to determine the 

minimum sample length that would produce an accurate characterization of multiple 

types of signals in a noise-free environment. The signal types (as determined by their 

probability distributions) examined were Gaussian (the normal distribution), uniform, 

exponential, and Rayleigh. The reasoning behind these choices is given below. 

The theoretical mean, variance, and third-order cumulant were calculated for each 

of the distributions. For the distributions examined here, these results were straightfor- 

ward -ei ther  a constant value, or a peak at one specific value. After the theoretical 

values were calculated, MATLAB was used to simulate the sequences and to calculate 

their bispectra with the HOSA toolbox. These results were then compared to the theo- 

retical predictions, and the process was repeated for various sample lengths. As might be 

expected, the calculated mean, variance, and third-order cumulants more closely approxi- 

mated their theoretical values as the sample lengths were increased. The result of this step 

was a minimum signal sample length which provides a quantifiably accurate estimate for 

each of the distributions under study. 

A. THEORY 
1. Introduction 

As mentioned above, the four signal distribution types examined in this experi- 

ment were the Gaussian, uniform, exponential, and Rayleigh distributions. The Gaussian 

distribution was examined as a baseline; its prevalence in the world of signals (especially 

in light of the Central Limit Theorem) makes its inclusion more or less mandatory. In 

addition, the Gaussian distribution is particularly interesting in the field of higher-order 

statistics due to the fact, discussed above, that its third- and higher-order cumulants are 

identically zero. This characteristic, of course, is the impetus behind this thesis; if most 
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noise is Gaussian, and Gaussian signals disappear at higher orders, then perhaps higher- 

order statistics are a good candidate for the development of noise-reduction techniques. 

The second distribution examined was the zero-centered uniform distribution. As 

with the Gaussian sequence, the uniform sequence was studied here more as a control or 

baseline rather than in the hope that it would provide some unique noise resistance in 

higher orders. This is due to the fact that, as with the Gaussian distribution, the zero-mean 

uniform distribution has a third-order cumulant of zero. These third-order cumulant 

values of zero arise from the symmetry of the Gaussian and uniform distributions, which 

is discussed in more detail below. 

The third distribution examined was the exponential distribution. As an asym- 

metric distribution, the exponential distribution has a nonzero third-order cumulant and 

could potentially prove to be valuable as an information-bearing signal in the presence of 

Gaussian noise, if such noise can be reduced via higher-order statistics, The exponential 

distribution examined here, however, is not the pure exponential distribution as described 

in textbooks but is rather a "mean-shifted" version. Essentially it is the pure exponential 

distribution from which the mean has been subtracted. This has the effect, of course, of 

shifting the distribution to center it around zero. 

The fourth distribution examined, the Rayleigh distribution, was also a "mean- 

shifted" version. As with the exponential distribution, the Rayleigh distribution is asym- 

metric and hence in this study is less of a control signal and more of a potentially useful 

information-bearing signal. As with the exponential signal, the "mean-shifted" version 

was generated simply by subtracting the mean on a sample-by-sample basis so that the 

resulting distribution was centered about zero. 

2. Theory 

The third-order cumulant of a sequence of samples of a zero-mean process is 

equivalent to its third-order moment [Ref. 13. Additionally, if the samples are inde- 

pendent and identically distributed (Y.i.d."), the third-order cumulant is equal to the 

(scalar) value of the third-order moment at only one point, that at which both lags are 

zero (see Appendix D). Two additional useful properties are that the third-order cumulant 

of a symmetric distribution is zero, and that the cumulant of two statistically independent 
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Gaussian noise, if such noise can be reduced via higher-order statistics. The exponential 

distribution examined here, however, is not the pure exponential distribution as described 

in textbooks but is rather a "mean-shifted" version. Essentially it is the pure exponential 

distribution from which the mean has been subtracted. This has the effect, of course, of 

shifting the distribution to center it around zero. 

The fourth distribution examined, the Rayleigh distribution, was also a "mean- 

shifted" version. As with the exponential distribution, the Rayleigh distribution is asym- 

metric and hence in this study is less of a control signal and more of a potentially useful 

information-bearing signal. As with the exponential signal, the "mean-shifted" version 

was generated simply by subtracting the mean on a sample-by-sample basis so that the 

resulting distribution was centered about zero. 

2. Theory 

The third-order cumulant of a sequence of samples of a zero-mean process is 

equivalent to its third-order moment [Ref. 1]. Additionally, if the samples are inde- 

pendent and identically distributed ("i.i.d."), the third-order cumulant is equal to the 

(scalar) value of the third-order moment at only one point, that at which both lags are 

zero (see Appendix D). Two additional useful properties are that the third-order cumulant 

of a symmetric distribution is zero, and that the cumulant of two statistically independent 



random processes is equal to llle sum of the cumulants of the individual processes [Ref. 

41. 
The Gaussian and uniform distributions are indeed symmetric, so their third-order 

cumulants are zero. The exponential and Rayleigh distributions are asymmetric, and 

therefore have nonzero third-order cumulants. However, the pure exponential and 

Rayleigh distributions have nonzero mean and, hence, must be "mean shifted" in order to 

take advantage of the properties listed above. Once the mean has been removed, these 

new sequences contain no more signal energy than the Gaussian- and uniform-distributed 

sequences, but still yield nonzero third-order cumulants. 

The probability density functions (PDFs) and theoretical third-order cumulant 

values are given here for each of the distributions. Most of the functions listed here may 

be found in any of a number of standard statistics texts; e.g., see [Ref. 51. Some of the 

functions have been derived from others; this work is catalogued in Appendix E (as well 

as in the MATLAB code of Appendix G). 

a. Normal (Gaussian) distribution 

The PDF of a Gaussian distribution is given by 
- ( X - P I 2  

for --oocx~co (3) 

where p is the mean and 0 is the standard deviation of the random variable. The third- 

order cumulant of such a distribution is zero, because the distribution is symmetric. 

b. Uniform distribution 

The PDF of a uniform distribution is given by 

a f o r a c x c b  

0 otherwise 
f d x )  = (4 

where a and b are the lower and upper range limits, respectively. The third-order cumu- 

lant of this distribution is zero as well. 
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random processes is equal to the sum of the cumulants of the individual processes [Ref. 
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The Gaussian and uniform distributions are indeed symmetric, so their third-order 

cumulants are zero. The exponential and Rayleigh distributions are asymmetric, and 

therefore have nonzero third-order cumulants. However, the pure exponential and 
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a.  Normal (Gaussian) distribution 

The PDF of a Gaussian distribution is given by 

1 f^{x)   =   —i=e  '" for -co<x<co (3) 

where \x is the mean and a is the standard deviation of the random variable. The third- 

order cumulant of such a distribution is zero, because the distribution is symmetric. 

h.  Uniform distribution 

The PDF of a uniform distribution is given by 

A.I<-)=        I       \        „..„„„ (4) 0       otherwise 

where a and b are the lower and upper range limits, respectively. The third-order cumu- 

lant of this distribution is zero as well. 



c. Mean-shifed exponential distribution 

The PDF of the "mean-shifted'' exponential distribution is given by 

where h is the reciprocal of the distribution's scale parameter [Ref. 5: p. 591. For this 

distribution, the third-order cumulant is 2/h3. Setting the variance of a variable with such 

a distribution to four produces a theoretical third-order curnulant of 16. 

d. Mean-shifed Rayleigh distribution 

The PDF of the "mean-shifted" Rayleigh distribution is given by 

where b is the distribution scale parameter [Ref. 5: p. 1341. The third-order cumulant of 

this distribution is b3 (n-3) dm, and setting the variance to four forces the third- 

order cumulant to evaluate to a (truncated) value of 5.04739. 

The Gaussian and uniform distributions are the standard ones, taken in this 

case from [Ref. 51. The mean-shifted Rayleigh and mean-shifted exponential distribu- 

tions are adapted from the standard Rayleigh and exponential distributions, from the same 

reference. The calculations for the third-order cumulant values are given in Appendix E. 

3. Results 

The values to be predicted in this case were the sequence mean, variance, and 

third-order cumulant, for each of the four distributions. Since the sequences consist of 

independent, identically-distributed random variables, the second- and third-order cumu- 

lants have the form ci( z ) = a 2 6 (  z ) and cf (z , z2)= ad( z 6( z,), respectively (i.e., 

they are zero except for Ti = 0). The theoretical values are summarized in Table 1, and 

will be compared to the experimental results in the following Chapters. 
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Ae-"^"''^      f0Tx>~^ 

0 otherwise 

where A, is the reciprocal of the distribution's scale parameter [Ref. 5: p. 59]. For this 
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(-4) « /wW= < \ ILL^     2,^ forx>-b^lj (6) 

0 otherwise 
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~ 

Mean 0.4 0 0 0 0 

Variance (ct) 4 4 4 4 
___ 

Third-order 

cumulant (a) 
0 0 16 5.04739.. . 

Table 1. Theoretical Statistical Values for Various Distribution Types 

B. EXPERIMENTAL RESULTS 
1. Procedure 

For each of the four distributions under study, a MATLAB script (see Appendix 

G) was executed with the sequence (realization) length set to 512. This length was 

selected because prior experimentation had suggested that 512 points were adequate to 

consistently produce third-order cumulant estimates with a variance of unity or less. The 

script calls a MATLAB function rpiid-var (included in Appendix G), which is an adapta- 

tion of the HOSA rpiid program, to generate the random variables. The rpiid-var func- 

tion has the added fbnctionality of allowing a user-specified variance and of providing 

additional sequence types (notably the mean-shifted exponential and mean-shifted 

Rayleigh distributions). 

Each of the four ensembles produced consisted of 8192 realizations of the 5 12- 

point sequences. The mean, variance, and third-order cumulant were first estimated for 

one realization (one 5 12-point sequence) out of each ensemble, and the three values esti- 

mated were each plotted as a data point. The procedure was then repeated for two realiza- 

tions, for four realizations, and so on, as the number of sequences examined were doubled 

with each iteration. [The flow of these simulations is expanded for clarity in Appendix F.] 

Thus, the estimates of the mean, variance, and third-order cumulant for each distribution 

could be plotted as a function of ensemble length. 

Each of these plots is reproduced in Appendix A. The plots are grouped together 

by relevant statistic: for example, Figures 9 through 12 represent the mean calculations 

for ensembles of Gaussian, uniform, mean-shifted exponential, and mean-shifted 

Rayleigh distributions, respectively. Similarly, Figures 13 through 17 represent the calcu- 

lated variances, and Figures 17 through 20 represent the calculated third-order cumulant 
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estimates. The horizontal line in each plot is the theoretical value of the statistic in ques- 

tion, for comparative purposes. 

Observations and intermediate conclusions follow each set of four plots. Overall 

conclusions are in the section following the data; general results are discussed below. 

2. Results 

The plots suggest, unsurprisingly, that the estimates of ensemble mean, variance, 

and third-order cumulant become more accurate as the ensemble length is increased. One 

typical plot is reproduced below as Figure 1; it and the others are contained in Appendix 

A. Figure 1 shows that as the ensemble length is increased from 1 to 1024 sequences, the 

estimate of the ensemble third-order cumulant approaches its theoretical value as a 

decaying oscillation. (The theoretical value, zero, is represented in the plot below as a 

line of dots, spaced logarithmically.) 

1.21 1 

Statistic: 3rd-order cumulant 
Sequence length: 512 
Sequence type: Gaussian 

-0.2 ' 
1 oo 10' 1 o2 1 o3 1 o4 

Number of realizations 

Figure 1. Third-order cumulant estimates. Estimates were calculated for Gaussian 

ensembles of varying lengths 

Table 2 shows the minimum ensemble length, by distribution type, to attain five 

percent or less experimental error for each of the three statistics. Note that the mean of 

all four sequences, and the third-order cumulant estimate of the Gaussian and uniform 
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sequences, is zero; in these cases the number given is the minimum number of realiza- 

tions required to draw to within an absolute error of 0.05. 

Statistic Mean-shifted exponential 

Mean 1 
Variance (d) 4 2 16 

Third-order cumu- 256 128 64 

Mean-shifted Rayleigh 

1 
4 

128 
lunt (a) 

Table 2 Minimum ensemble sizes required to produce five percent or less error, or to within an absolute 

error of 0.05 

Table 3 shows the experimental error for each statistic (for each distribution) 

when the ensemble used comprises 256 realizations of 512 data points each. As in Table 

2, the error values where the expected value is zero are absolute magnitude errors, and not 

percent errors. 
I__- 

Statistic 1 Gaussian Uniform i Mean-shifed exponential 1 Mean-shifted Rayleigh 1 

1.25 % 1 0.625 % 1 

Table 3 Error in statistic estimates for ensemble size of 256 realizations, 512 points each (shaded cells are 

absolute error values, nonshaded cells are percent error values) 

3. Conclusions 

The error in the ensemble mean calculations remained small regardless of the 

ensemble size. The ensemble variance estimates showed a good deal more error at shorter 

ensemble sizes, and seemed to suggest that 256 realizations, at a minimum, are necessary 

to obtain estimates which are consistently within an experimental error of one percent. 

The ensemble third-order cumulant estimates exhibited similar results, although 

the error values involved were slightly larger. While one percent error was never realized 

for all three statistics of the mean-shifted Rayleigh distribution, the errors did reach less 

than five percent at 128 realizations. 

Overall, the data suggest that a minimum ensemble size of 256 realizations, of 
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.'■Xm -,-w,'  .i^^HHi^n^ra^N^'' ''■'.'   ■ ,L03ilO"l   .     . 
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512 points each should be sufficient for cumulant estimation. This ensemble size corre- 

sponds to a total data set length of 13 1072 points. 

In the second-order domain, it is frequently the case that a signal's power spectral 

density is of more interest than its correlation function. Similarly, it may be more useful 

to examine a signal's polyspectra than to restrict examination to its moments and cumu- 

lants. For this reason, Chapter I11 examines the effects of various parameters on the 

generation of the bispectra for these distributions of interest. 
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111. BISPECTRA OF DIFFERENT SIGNAL TYPES 

A. THEORY 
1. Introduction 

Because of the insight it provides, it is often desirable to examine a signal in the 

frequency domain. As discussed in Chapter I, an estimate of a signal's autoconelation 

function (a second-order statistic) may be used to generate a power spectral density 

display. Likewise, the estimate of a signal's third-order cumulant may be used to 

generate its bispectrum. Unfortunately, generation of such an estimate requires more 

careful consideration than simply generating a signal's third-order moment or cumulant. 

MATLAB, through its HOSA toolbox, provides a number of convenient tools 

with which to estimate the bispectrum of a signal. These functions require the user to 

specify a number of parameters, whose relationships to the final result are not always 

completely predictable or intuitive. This Chapter, then, details experimentation with one 

of the functions and compares the results produced with the results predicted by theory. 

2. MATLAB Bispectrum Estimation Functions 

The MATLAB HOSA toolbox provides several functions to generate bispectral 

estimates [Ref. 61. The two conventional (non-parametric) functions it provides are 

bispecd and bispeci. The former uses a "direct" method, performing discrete Fourier 

transforms (DFTs) before smoothing the result in the frequency domain. The latter, used 

here, operates via an "indirect" method and smooths the third-order cumulant estimates in 

the time domain with a lag window, before performing the DFT. [The HOSA toolbox 

also provides a function, bispect, to compute the bispectrum using a parametric method, 

as well as additional functions to produce cross-bispectral estimates. This parametric 

function was not used here.] 

The bispeci function accepts several parameters. The user provides the number of 

lags to be computed, the size of each data segment, the overlap between segments, the 

length of the DFT to be used, the type of lag window to be applied to the data, and 

whether a biased or an unbiased estimate is to be computed. 

If the dataset provided is a matrix, bispeci assumes that each column is an inde- 
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pendent realization of data. In this case, the data segment size is forced to be the row 

dimension, and the overlap between segments is set to zero. The window used by bispeci 

defaults to a Parzen window [Refs. 6,7] but can be overridden to use a unit hexagonal 

window. 

3. Theoretical Predictions 

The bispectra of the Gaussian- and uniform-distributed signal ensembles are theo- 

retically flat in both dimensions and have a magnitude of zero. The bispectra of the 

mean-shifted exponential and mean-shifted Rayleigh distributions are also theoretically 

flat, but have nonzero magnitudes; the magnitude in each case is the scalar value of the 

signal's third order cumulant a. Thus, given a variance of four in the underlying random 

process, the bispectrum of the mean-shifted exponential ensemble should be a flat plane 

with a magnitude of 16. Likewise, the bispectrum of the mean-shifted Rayleigh ensemble 

should be a flat plane with a magnitude of approximately 5.04. (See Table 1 in Chapter I1 

for the theoretical values.) 

If the signal is processed by a linear filter before its bispectrum is calculated, the 

filter will serve to shape the bispectrum. The "floor" value of such a signal should still be 

its third-order cumulant value: zero for the Gaussian and uniform distributions, 16 for the 

exponential distribution, and approximately 5.04 for the Rayleigh distribution. However, 

for the exponential and Rayleigh distributions, the shaping will cause the bispectrum to 

no longer be flat; i.e., it will go from being a white to a colored signal. The theoretical 

bispectrum of this shaped signal may be expressed as a function of the original sequence 

and of the transfer function of the shaping filter. 

When a signal is transformed in some fashion, its polyspectra are obviously trans- 

formed as well. If the signal is stationary and has zero mean, and the transformation is 

linear and time-invariant (as is the case here), then the bispectrum of the output is related 

to the bispectrum of the input by the expression 

B ,  ( Lo1 , w 2 ) = ~ *  (eJ(wl+w2)) H (eJ " ' ) H ( e J  " 2 ) ) ~ ~  (wl, w 2 ) ,  (7 )  

where Bx(w,m2) is the bispectrum of the input sequence, By(co1,a2) is the bispectrum of 

the output (filtered) sequence, and H ( P )  is the filter transfer function [Ref. 3, p. 2651. 

From this expression, the bispectrum of a filtered signal can be predicted, if the filter 
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transfer function and the bispectrum of the original signal are known. 

The filter used in this study was a simple one-pole, lowpass filter (LPF), described 

by the difference equation y[n]  = py[n- l ]  + x[nJ ,  where x[n]  is the input sequence, y[n] is 

the output sequence, and p is a feedback parameter (0 c p < 1). The frequency response 

of this filter is given by [Ref. 81 

Therefore, substituting this expression into Equation (7) yields 

In this case, the bispectrum of the input sequence B,(al,az) is a real scalar value a: zero 

for the Gaussian and uniform cases, 16 for the mean-shifted exponential case (given an 

initial signal variance of four), and approximately 5.04 for the mean-shifted Rayleigh 

case (again, given an initial signal variance of four). Thus, producing the theoretical 

bispectrum of the output sequence BY(a1,o2) is simply a matter of having MATLAB 

calculate the appropriate result for each value of 01 and a2, and multiplying by the appro- 

priate scalar value. 

For purposes of this study, the filter parameter p was initially arbitrarily chosen to 

be 0.25, although other values were examined as well. This value was provided to a short 

MATLAB script, along with the scalar value Bx(a1,a2). The script then produced the 

theoretical bispectra of white noise signals that had been shaped by the LPF. 

For example, Figures 2 through 5 show the magnitude and phase of the theoretical 

bispectrum of a mean-shifted exponentially-distributed signal, which has been processed 

by a filter described in Equation (8) with a parameter p of 0.25. The plots show that the 

bispectrum is indeed shaped by the filter and is no longer flat in magnitude or phase 

response. 
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Figure 2 Theoretical magnitude, mesh plot. Signal has a mean-shifted exponential 

distribution with variance = 4 and filter p = 0.25. 
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Figure 3 Theoretical magnitude, contour plot. Signal has a mean-shifted exponen- 

tial distribution with variance = 4 and filter P = 0.25. 
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Figure 4 Theoretical phase, mesh plot. Signal has a mean-shifted exponential 

distribution with variance = 4 and filter j3 = 0.25. 
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distribution with variance = 4 and filter j3 = 0.25. 
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Figure 5 Theoretical phase, contour plot. Signal has a mean-shifted exponential 

distribution with variance = 4 and filter p = 0.25. 
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By comparing the results produced by bispeci with these predicted results, the 

effects of changing the various arguments to bispeci were studied. The theoretical 

results were also used to calculate mean-squared error (MSE) values for each estimated 

bispectrum. The MSE equation is given by [Ref. 3: p. 3121 

E=E { (B-B^I2],  (10) 

where B is the theoretical value being examined and B̂  is the experimentally obtained 

value. The mean-square error values calculated are given in the "Experimental Results 

and Conclusions" section, following. 

B. PROCEDURE 

The procedure followed was to generate a data ensemble for each of the four 

distributions, and then to use bispeci to generate bispectral estimates of each ensemble. 

As the parameters to bispeci were varied, the effects on the bispectral estimates were 

examined. After the original distributions were examined, the MATLAB fifilter function 

was used to produce a shaped version of each signal ensemble. The bispeci function was 

then used to generate bispectral estimates of these shaped signals, which were examined 

as well. 

The size of the datasets was set according to the conclusions of the previous 

Chapter; matrices comprising 256 realizations of 5 12-point sequences were used. This 

dataset size was the minimum necessary to provide consistent third-order cumulant esti- 

mates. As before, the variance of each data sequence was set to four, so that the third- 

order cumulant estimates from Chapter I1 would still be valid. 

Initially, the datasets were provided to bispeci and the number of lags to be 

computed was varied from 32 to 512 while the DFT size was left at its default. If not 

specified by the user, the DFT length in bispeci defaults to the next power of two greater 

than twice the lag argument (e.g., the MATLAB command [bspec,waxis] = bispeci(y,32) 

has a lag argument of 32; this command sets the DFT length to its default of 128). Table 

4 shows the default DFT length for each lag argument used here. 

Next, the datasets were provided to bispeci with a lag argument of 256, but the 

DFT length was increased rather than allowed to remain as its default. 
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Lag argument 

Because the datasets used were matrices, the data segment size and overlap parameters 

could not be changed manually. However, this was not a problem, as the bispeci function 

properly interpreted each matrix as a series of realizations of the same random sequence. 

Biased estimates were used throughout the procedure. The choice of windows is limited 

in bispeci to either a Parzen or a unit hexagonal window. Neither of these choices, 

however, seemed to greatly affect the bispectral plots and hence the default Parzen 

window was used throughout. 

As the various bispectral estimates were calculated, it was observed that they were 

not purely real, as theory states they should be, but had imaginary components. Using the 

estimate magnitudes for three-dimensional mesh plots and mean-square error calculations 

produced reasonably accurate results; however, the presence of the imaginary compo- 

nents did serve as a source of error. 

For example, Figure 6 shows the phase of one of the bispectral estimates, that of 

the mean-shifted exponential distribution, when calculated using a lag argument of 128 

and a DFT length of 5 12. The phase in both frequency dimensions should be flat and 

zero-valued, and clearly is not. 

It was determined that the bispeci function was adding a bilinear phase term as it 

generated the bispectral estimates. (It was not clear from examination of the source code 

how this unwanted phase was produced, but it is apparently due to a temporal shift of the 

data.) Repeated attempts to eliminate the imaginary components while maintaining an 

accurate bispectral estimate were also unsuccessful. Therefore, the magnitude of the 

bispectral estimate was used whenever a plot was generated or a mean-square error value 

was calculated. 

Default DFT length 
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32 128 
64 256 1 
128 512 
256 1024 
512 2048 

- 

Lag argument Default DFT length 

32 128 

64 256 

128 512 

256 1024 

512 2048 

Table 4 Default DFT values for bispeci lag arguments 

Because the datasets used were matrices, the data segment size and overlap parameters 

could not be changed manually. However, this was not a problem, as the bispeci function 

properly interpreted each matrix as a series of realizations of the same random sequence. 

Biased estimates were used throughout the procedure. The choice of windows is limited 

in bispeci to either a Parzen or a unit hexagonal window. Neither of these choices, 

however, seemed to greatly affect the bispectral plots and hence the default Parzen 

window was used throughout. 

As the various bispectral estimates were calculated, it was observed that they were 

not purely real, as theory states they should be, but had imaginary components. Using the 

estimate magnitudes for three-dimensional mesh plots and mean-square error calculations 

produced reasonably accurate results; however, the presence of the imaginary compo- 

nents did serve as a source of error. 

For example. Figure 6 shows the phase of one of the bispectral estimates, that of 

the mean-shifted exponential distribution, when calculated using a lag argument of 128 

and a DFT length of 512. The phase in both frequency dimensions should be flat and 

zero-valued, and clearly is not. 

It was determined that the bispeci function was adding a bilinear phase term as it 

generated the bispectral estimates. (It was not clear from examination of the source code 

how this unwanted phase was produced, but it is apparently due to a temporal shift of the 

data.) Repeated attempts to eliminate the imaginary components while maintaining an 

accurate bispectral estimate were also unsuccessful. Therefore, the magnitude of the 

bispectral estimate was used whenever a plot was generated or a mean-square error value 

was calculated. 
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Figure 6 Phase (in radians) of bispectral estimate. Signal has mean-shifted exponential 

distribution and has been colored (p = 0.25). Lag argument used in bispectral estimate 

is 128. 

Plots (generated using the MATLAB mesh function) of the bispectral estimate 

magnitudes are shown in Appendix B, along with some observations. 

After the four original datasets were examined, the MATLABJiZter function was 

used to produce filtered versions of the two asymmetrically-distributed signals (mean- 

shifted exponential and mean-shifted Rayleigh). The filter used was the basic, one-pole 

LPF described in the previous section, and the filter parameter p was initially set to 0.25. 

Bispectra for these shaped signals were then generated, using bispeci. This proce- 

dure was then repeated with p set to 0.1, and again with p set to 0.05. Each set of 

bispectral estimates was compared to its theoretical value to calculate a mean-square error 

result. 

As in the case of the flat signals, bispectral estimates for the shaped signals were 

first produced as the lag argument to bispeci was increased from 32 to 5 12. Once these 

six bispectral estimates were calculated, the lag argument was set to 128 and the DFT 

length was increased. The bispectral plots produced are in Appendix B as well, along 
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Figure 6 Phase (in radians) of bispectral estimate. Signal has mean-shifted exponential 

distribution and has been colored (P = 0.25). Lag argument used in bispectral estimate 

is 128. 

Plots (generated using the MATLAB mesh function) of the bispectral estimate 

magnitudes are shown in Appendix B, along with some observations. 

After the four original datasets were examined, the MATLAB filter function was 

used to produce filtered versions of the two asymmetrically-distributed signals (mean- 

shifted exponential and mean-shifted Rayleigh). The filter used was the basic, one-pole 

LPF described in the previous section, and the filter parameter p was initially set to 0.25. 

Bispectra for these shaped signals were then generated, using bispeci. This proce- 

dure was then repeated with P set to 0.1, and again with p set to 0.05. Each set of 

bispectral estimates was compared to its theoretical value to calculate a mean-square error 

result. 

As in the case of the flat signals, bispectral estimates for the shaped signals were 

first produced as the lag argument to bispeci was increased from 32 to 512. Once these 

six bispectral estimates were calculated, the lag argument was set to 128 and the DFT 

length was increased. The bispectral plots produced are in Appendix B as well, along 
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with some interim observations. 

C. EXPERIMENTAL RESULTS AND CONCLUSIONS 

bispeci parameters Gaussian Uniform 

Theoretical value 0.0000 0.0000 
nlag = 32, nDFT = 128 0.4441 0.4027 
nlag = 64, nDFT = 256 0.8838 1.2886 

Mean-shifted Mean-shifted 

exponential Rayleigh 
16.0000 5.04739.. . . 
15.7044 5.0097 
15.7655 5.043 1 

Table 5 Mean values of bispectral estimates of white signals 

nlag = 128, nDFT = 512 1.7145 15.8604 5.1738 
nlag = 256, nDFT = 1024 3.2327 3.5828 16.0357 5.6939 
nlag = 512, nDFT = 2048 3.3218 3.442 1 15.9785 5.751 

~ _ _ _ _ _ _ _  

~- 
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nlag = 256, nDFT = 2048 3.2333 3.5831 16.0358 5.6944 

with some interim observations. 

C. EXPERIMENTAL RESULTS AND CONCLUSIONS 

The bispectra of the unshaped signals were indeed flat, although some variance 

(in the form of jaggedness in the bispectral plots) was noticeable, which grew as the 

number of lags calculated increased. The mean of the bispectrum of each of the 24 white 

signals (six bispectral estimates each of the four signal ensembles, corresponding to 

Figures 21 through 44 in Appendix B) is given below in Table 5. In every case, with the 

exceptions of the lag and DFT size argimients, the parameters provided to bispeci were 

left as their default values. 

Table 6 contains mean-squared error values generated from the same bispectral 

estimates. The theoretical values used here were those given at the top of Table 5; the 

theoretical bispectra of these white signals are flat planes of a particular value, as 

discussed above. 

bispeci parameters Gaussian Uniform Mean-shifted 

exponential 

Mean-shifted 

Rayleigh 

Theoretical value                     0.0000 0.0000 16.0000 5.04739.... 

nlag = 32, nDFT = 128 0.4441 0.4027 15.7044 5.0097 

nlag = 64, nDFT = 256 0.8838 1.2886 15.7655 5.0431 

nlag =128, nDFT = 512 1.7145 2.208 15.8604 5.1738 

nlag = 256, nDFT = 1024 3.2327 3.5828 16.0357 5.6939 

nlag = 512, nDFT = 2048 3.3218 3.4421 15.9785 5.751 

nlag = 256, nDFT = 2048 3.2333 3.5831 16.0358 5.6944 

Table 5 Mean values of bispectral estimates of white signals 
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bispeci parameters Mean-shifted 

exponential 
0.3 185 
2.1513 

nlag = 32, nDFT = 128 

Mean-shifted 

Ray leigh 
0.1700 
0.5834 

- 

nlag = 64, nDFT = 256 

Gaussian 

______ 

0.2596 
1.0056 
3.7679 

_____ 

nlag = 128, nDFT = 512 

nlag = 256, nDFT = 1024 

Uniform 

0.2076 
2.0902 
6.1982 

~~ 

nlag = 5 12, nDFT = 2048 

5.1 110 
10.7852 

nlag = 256, nDFT = 2048 

- 
1.8885 
5.8966 

_____ 

13.3734 16.3846 

Table 6 Mean-squared error for bispectral estimates of white signals 

An initial observation is that the mean values and the mean-square error of the 

bispectral estimate, rises as the lag argument and DFT length is increased. This is due to 

the increased variance of the bispectral estimate as longer lags are used. However, 

comparing the fourth and last rows of Tables 5 and 6 also suggests that the DFT length is 

not a factor, as holding the lag argument while increasing the DFT length does not 

significantly affect the calculated values of either the mean or the mean-square error. 

It is also interesting to note that the mean-squared error values calculated for the 

mean-shifted Rayleigh signal are significantly lower than those calculated for the mean- 

shifted exponential signal. 

Overall, the mean values seem to correspond to those predicted by theory and also 

to fit with the plots contained in Appendix B. 

After the white datasets were examined, the signals which had been shaped by the 

LPF were used to generate bispectral estimates. Figure 7, reproduced from Appendix B 

[Figure 461, shows the result for one of the shaped signal ensembles. In this case, a mean- 

shifted, exponentially-distributed ensemble was generated with variance o2 = 4, and 

filtered by the LPF described above. The bispectrum of the resultant signal was then esti- 

mated using a lag argument of 32 and DFT length of 128 and is plotted here. 

14.0492 
13.3734 

24 

15.0831 
16.3846 

bispeci parameters 
- ■ 

Gaussian Uniform Mean-shifted 

exponential 

Mean-shifted 

Rayleigh 

nlag = 32, nDFT = 128 0.2596 0.2076 0.3185 0.1700 

nlag = 64, nDFT = 256 1.0056 2.0902 2.1513 0.5834 

nlag =128, nDFT = 512 3.7679 6.1982 5.1110 1.8885 

nlag = 256, nDFT = 1024 13.3734 16.3846 10.7852 5.8966 

nlag = 512, nDFT = 2048 14.0492 15.0831 8.6563 6.1501 

nlag = 256, nDFT = 2048 13.3734 16.3846 10.7844 5.8908 

Table 6 Mean-squared error for bispectral estimates of white signals 

An initial observation is that the mean values and the mean-square error of the 

bispectral estimate, rises as the lag argument and DPT length is increased. This is due to 

the increased variance of the bispectral estimate as longer lags are used. However, 

comparing the fourth and last rows of Tables 5 and 6 also suggests that the DFT length is 

not a factor, as holding the lag argument while increasing the DFT length does not 

significantly affect the calculated values of either the mean or the mean-square error. 

It is also interesting to note that the mean-squared error values calculated for the 

mean-shifted Rayleigh signal are significantly lower than those calculated for the mean- 

shifted exponential signal. 

Overall, the mean values seem to correspond to those predicted by theory and also 

to fit with the plots contained in Appendix B. 

After the white datasets were examined, the signals which had been shaped by the 

LPF were used to generate bispectral estimates. Figure 7, reproduced from Appendix B 

[Figure 46], shows the result for one of the shaped signal ensembles. In this case, a mean- 

shifted, exponentially-distributed ensemble was generated with variance a^ = 4, and 

filtered by the LPF described above. The bispectrum of the resultant signal was then esti- 

mated using a lag argument of 32 and DFT length of 128 and is plotted here. 

24 



. . .'. , . .  8 . .  . . .  , . .  . . .  I ' . .  ... 

bispeci parameters 

nlag = 32, nDFT = 128 

nlag = 64, nDFT = 256 

.. . , . . . .  
' . .  

_ _ . '  .:. . . .  , . .  . . . '  . . .  ' . .  .. 8 . .  . . '  
...... I . .  

_ . '  
. . '  

... 
. ... 

Gaussian 

_____ 

0.3623 
1.3239 2.6350 2.6927 0.7035 

-0.5 -0.5 

nlag = 128, nDFT = 512 

nlag = 256, nDFT = 1024 

Figure 7 Estimated bispectral magnitude. Signal has mean-shifted exponential distribu- 

tion and has been colored (filter p = 0.25). Bispectral estimate was generated with 32 

lags and DFT length of 128. 

4.8376 7.8563 6.4024 2.3588 
16.9476 20.6921 13.6114 7.2742 

_ _ _ _ _ _ ~ ~ ~  

Table 7 Mean-squared error for bispectral estimates of colored signals (p = 0.25) 
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Figure 7 Estimated bispectral magnitude. Signal has mean-shifted exponential distribu- 

tion and has been colored (filter (3 = 0.25). Bispectral estimate was generated with 32 

lags and DFT length of 128. 

Comparing Figure 7 with Figure 2 shows that, although the signal has indeed been 

shaped by the LPF, the difference between the bispectrum estimate and its theoretical 

value is significant. Once the bispectral estimates were complete, their theoretical values 

were used to calculate mean-square error figures. These values are given in Table 7, 

below. 

bispeci parameters Gaussian Uniform Mean-shifted 

exponential 

Mean-shifted 

Rayleigh 

nlag = 32, nDFT = 128 0.3623 0.2549 0.4654 0.2083 

nlag = 64, nDFT = 256 1.3239 2.6350 2.6927 0.7035 

nlag =128, nDFT = 512    , 4.8376 7.8563 6.4024 2.3588 

nlag = 256, nDFT = 1024 \6.9Al(i 20.6921 13.6114 7.2742 

Table 7 Mean-squared error for bispectral estimates of colored signals (P = 0.25) 
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The filter parameter p was then reduced, from 0.25 to 0.1 ,and the bispectral esti- 

mates and their predicted values were again calculated. This new set of values were used 

to generate a second set of mean-square error results, which are given in Table 8. 

_______ 

nlag = 32, nDFT = 128 

nlag = 64, nDFT = 256 

nlag = 128, nDFT = 512 

nlag = 256, nDFT = 1024 

_____ 

I bispeciparameters 1 Gaussian 1 Uniform 1 Mean-shifted 1 Mean-shifted I 
exponential Rayleigh 

~ _ _ _ _ ~ ~  

0.3212 0.2463 1.1248 0.2624 
1.1028 2.2425 3.1781 0.6969 
3.8865 6.2737 6.5623 2.1195 
13.6627 16.5790 12.9732 6.3619 

- 

nlag = 32, nDFT = 128 

nlag = 64, nDFT = 256 

nlag = 128, nDFT = 512 

Table 8 Mean-squared error for bispectral estimates of colored signals (p = 0.1) 

exponential Rayleigh 
0.3104 0.2420 0.3822 0.2134 
1.0747 2.2135 2.3498 0.6405 
3.8109 6.1732 5.6016 2.0147 

~ _ _ _ _ _ _ ~ _ _ _  

____ - 

Finally, the filter parameter p was reduced once more to 0.05. The experimental 

and theoretical bispectral estimates were again calculated, and again used to generate a 

set of mean-square error measurements. These values are given in Table 9. 

1 bispeciparameters I Gaussian I Uniform I Mean-shifted ~ Mean-shifted ~ 

~~ ~ ~ 

blag=256,nDFT=1024 1 13.3975 1 16.2237 1 11.7695 1 6.0951 

Table 9 Mean-squared error for bispectral estimates of colored signals (p = 0.05) 

Recall that the filter parameter p can be interpreted as a feedback coefficient in 

the filter difference equation. This means that lowering its value effectively reduces the 

effect of the feedback path, and should be reflected in lower mean-square error values. 

An examination of Tables 7 through 9 shows that this is indeed generally the case. 

Overall, the most significant conclusion here is that greatly increasing the length 

of DFTs used, in and of itself, does not significantly alter the mean-square error of the 

bispectral estimate (see Table 5). The mean-square error does go up when both the lag 

argument and the DFT length are increased, but when the lag argument is held constant 

and the DFT length only is increased, the effect on the mean-square error is minimal. 
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and theoretical bispectral estimates were again calculated, and again used to generate a 

set of mean-square error measurements. These values are given in Table 9. 

bispeci parameters Gaussian Uniform Mean-shifted 

exponential 

Mean-shifted 

Rayleigh 

nlag = 32, nDFT = 128 0.3104 0.2420 0.3822 0.2134 

nlag = 64, nDFT = 256 1.0747 2.2135 2.3498 0.6405 

nlag =128, nDFT = 512 3.8109 6.1732 5.6016 2.0147 

nlag = 256, nDFT = 1024 13.3975 16.2237 11.7695 6.0951 

Table 9 Mean-squared error for bispectral estimates of colored signals (P = 0.05) 

Recall that the filter parameter p can be interpreted as a feedback coefficient in 

the filter difference equation. This means that lowering its value effectively reduces the 

effect of the feedback path, and should be reflected in lower mean-square error values. 

An examination of Tables 7 through 9 shows that this is indeed generally the case. 

Overall, the most significant conclusion here is that greatly increasing the length 

of DFTs used, in and of itself, does not significantly alter the mean-square error of the 

bispectral estimate (see Table 5). The mean-square error does go up when both the lag 

argument and the DPT length are increased, but when the lag argument is held constant 

and the DFT length only is increased, the effect on the mean-square error is minimal. 
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This is significant because DFT length would almost certainly be a critical issue if 

one were to design a practical signal processing application using this method. While 

DFT length is not completely insignificant, it would still be helpful for designers to know 

that scarce hardware resources or processing cycles might be more usefully spent else- 

where in a signal processing application. 

Another significant discovery is the difference between the mean square error of 

the bispectral estimates of mean-shifted exponential signals and those produced by the 

bispectral estimates of mean-shifted Rayleigh signals when the signals have been shaped 

by a filter (see Tables 7 through 9). The lower error values for the mean-shifted Rayleigh 

distribution suggest that it might be a more appropriate distribution for an information- 

bearing signal, if a communication system were being developed to take advantage of a 

higher-order statistical function for signal recovery. 

Of course, if this method were indeed to be developed into a real-world system, 

any received signals would not be simply shaped, shifted versions of the signals trans- 

mitted; they would also include additive noise. The receiver would be required to distin- 

guish the signal of interest from this noise-which typically has a Gaussian distribution 

and is frequently referred to as additive white Gaussian noise (AWGN). The next 

Chapter, then, examines the effects of adding a shaped, asymmetric information-bearing 

signal to such noise. 
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IV. NONGAUSSIAN SIGNALS IN THE PRESENCE OF GAUSSIAN NOISE 

A. THEORY 

1. Introduction 

In practice, information-bearing signals are not seen by themselves; they occur in 

an environment containing interfering noise sources, both natural and manmade. This 

Chapter investigates the effects of combining colored non-Gaussian information signals 

with Gaussian noise signals, at differing signal-to-noise ratios (SNR). 

2. Theoretical Predictions 

As discussed in Chapter I, the bispectrum of a Gaussian-distributed signal is theo- 

retically flat, with magnitude zero. Since the cumulants of a sum of independent signals 

add, the bispectrum of a non-Gaussian signal in additive Gaussian noise should be iden- 

tical to the bispectrum of the non-Gaussian signal alone. 

However, it seems likely that in practice the Gaussian noise will not be 

completely eliminated at higher orders. In this case, the Gaussian noise with a lower vari- 

ance should be suppressed more effectively than that with a higher variance. This stands 

to reason in light of the fact that variance may be viewed as a measure of signal strength. 

Based on the results of Chapter 111, another reasonable prediction would seem to 

be that the mean-shifted exponential ensemble will produce larger bispectral components, 

but at a cost of greater variance. 

B. EXPERIMENTAL RESULTS 

1. Procedure 

In MATLAB, four Gaussian noise signal ensembles were created, with variances 

o2 = 0.5, o2 = 1, o2 = 4, and o2 = 16. Additionally, mean-shifted exponential- and 

Rayleigh-distributed "information-bearing" signals were generated, both with a variance 

of four. These information signals were filtered, as in the previous Chapter, by a shaping 

filter with a filter parameter p = 0.1. This parameter was chosen based on the results of 

the previous Chapter; p = 0.1 was the middle value examined and appeared to produce 

reasonable mean-square error values. 
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completely eliminated at higher orders. In this case, the Gaussian noise with a lower vari- 

ance should be suppressed more effectively than that with a higher variance. This stands 

to reason in light of the fact that variance may be viewed as a measure of signal strength. 

Based on the results of Chapter III, another reasonable prediction would seem to 

be that the mean-shifted exponential ensemble will produce larger bispectral components, 

but at a cost of greater variance. 

B. EXPERIMENTAL RESULTS 

1. Procedure 

In MATLAB, four Gaussian noise signal ensembles were created, with variances 

a^ = 0.5, <y^= 1, a^ = 4, and a^ = 16. Additionally, mean-shifted exponential- and 

Rayleigh-distributed "information-bearing" signals were generated, both with a variance 

of four. These information signals were filtered, as in the previous Chapter, by a shaping 

filter with a filter parameter p = 0.1. This parameter was chosen based on the results of 

the previous Chapter; p = 0.1 was the middle value examined and appeared to produce 

reasonable mean-square error values. 
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The signal to noise ratio for the ensembles with a noise variance 02" = 4 was thus 

(11) 
u2 

5" = 10 log,, = 10 log ,, 4 = 0 dB. 
4 D, 

Similarly, the S N R  for the ensembles with a noise variance o2 = 0.5 is 9.03 dB; that for 

the ensembles with a noise variance o2 = 1 is 6.02 dB; and that for the ensembles with a 

noise variance o2 = 16 is -6.02 dB. 

After the colored signal ensembles were added to the noise dataset, the resulting 

signals were examined using cumest (the HOSA third-order cumulant estimation func- 

tion) and bispeci. Appendix C contains the plots generated by bispeci, as well as further 

discussion of each plot. 

First, the exponential data ensemble from the previous Chapters was combined 

with each of the two Gaussian noise files. This process was then repeated with the 

Rayleigh data ensemble. Once the combined ensembles were ready, the third-order cumu- 

lant of each data and noise ensemble was estimated using the HOSA function cumest. 

Next, bispeci was used to generate bispectral estimates of the four datasets. Based 

on the results of Chapter 111, two bispectral estimates were calculated for each dataset. 

For the first, the number of lags specified was 128, and the rest of the parameters to 

bispeci were allowed to remain as their defaults (see Table 4 in Chapter 111). This set the 

DFT length to 512 points, the window to "Parzen", and the estimate type to "biased." The 

lag argument (and hence the DFT length as well) were chosen as the minimum length to 

provide reasonable bispectral estimates; this kept the computing time and power required 

(a significant consideration here) to a minimum. 

The second bispectral estimate used a larger lag argument of 256. Again, the rest 

of the parameters were allowed to remain at their defaults. These second estimates were 

generated to determine whether increasing the lag argument had a significant effect on the 

bispectral estimate of the signal and noise combination. 
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The signal to noise ratio for the ensembles with a noise variance a^n = 4 was thus 
2 

5'iVi? = 101og,o-%=101og,o-^=OdB. (H) 
n 

Similarly, the SNR for the ensembles with a noise variance cr^ = 0.5 is 9.03 dB; that for 

the ensembles with a noise variance a^ = 1 is 6.02 dB; and that for the ensembles with a 

noise variance a^ = 16 is -6.02 dB. 
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Rayleigh data ensemble. Once the combined ensembles were ready, the third-order cumu- 

lant of each data and noise ensemble was estimated using the HOSA function cumest. 
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on the results of Chapter III, two bispectral estimates were calculated for each dataset. 

For the first, the number of lags specified was 128, and the rest of the parameters to 

bispeci were allowed to remain as their defaults (see Table 4 in Chapter III). This set the 

DFT length to 512 points, the window to "Parzen", and the estimate type to "biased." The 

lag argument (and hence the DFT length as well) were chosen as the minimum length to 

provide reasonable bispectral estimates; this kept the computing time and power required 

(a significant consideration here) to a minimum. 

The second bispectral estimate used a larger lag argument of 256. Again, the rest 

of the parameters were allowed to remain at their defaults. These second estimates were 

generated to determine whether increasing the lag argument had a significant effect on the 

bispectral estimate of the signal and noise combination. 
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2. Data 

Table 10, below, contains the third-order cumulant estimate results for each SNR 

value of the mean-shifted exponentially-distributed signal ensemble used, and the percent 

error that each represents. 

h e o r e t i c a l  SNR (dB) I Calculated third-order cumulant 7 1  Percent error 

9.03 15.7655 1.5 % 

I 6.02 I 15.62 15 I 2.4 % ' 0 I 15.8593 I 0.88 % I 
I -6.02 I 15.6328 I 2.3 % I 

Table 10 Cumulant and percent error at zero lag, colored mean-shifted exponential distributed sequence in 

AWGN (signal expected value = 16) 

Table 11 contains the third-order cumulant estimate results for each SNR value of 

the mean-shifted Rayleigh-distributed signal ensemble used, and the percent error each 

represents. 

1 Theoretical SNR (dB) ~ Calculated third-order cumulant ~ Percent error 1 
I 9.03 I 4.9946 I 1.05 % i 
1 6.02 ' 5.0298 ~ 0.35 % I 
~ 0 1 5.1447 1 1.93 % 1 
I -6.02 I 4.93 1 1 I 2.3 % ! 
I I I I 

Table 11 Cumulant and percent error at zero lag, colored mean-shifted Rayleigh distributed sequence in 

AWGN (signal expected value = 5.04739) 

After the cumulants of each combined signal and noise ensemble were calculated, 

the bispectrum of the ensemble was estimated using bispeci. For each bispectral estimate 

produced, a mean-square error figure was produced. For the mean-square error calcula- 

tion, the theoretical values used were those from the previous Chapter. The first set of 

bispectra produced used a lag argument of 128, and the resulting mean-square error 

values are given here in Table 12. 
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Theoretical SNR (dB) Calculated third-order cumulant 
1 

Percent error 

9.03 15.7655 1.5% 

6.02 15.6215 2.4% 

0 15.8593 0.88 % 

-6.02 15.6328 2.3% 

Table 10 Cumulant and percent error at zero lag, colored mean-shifted exponential distributed sequence in 

AWGN (signal expected value =16) 

Table 11 contains the third-order cumulant estimate results for each SNR value of 

the mean-shifted Rayleigh-distributed signal ensemble used, and the percent error each 

represents. 

Theoretical SNR (dB) Calculated third-order cumulant Percent error 

9.03 4.9946 1.05 % 

6.02 5.0298 0.35 % 

0 5.1447 1.93 % 

-6.02 4.9311 2.3% 

Table 11 Cumulant and percent error at zero lag, colored mean-shifted Rayleigh distributed sequence in 

AWGN (signal expected value = 5.04739) 

After the cumulants of each combined signal and noise ensemble were calculated, 

the bispectrum of the ensemble was estimated using bispeci. For each bispectral estimate 

produced, a mean-square error figure was produced. For the mean-square error calcula- 

tion, the theoretical values used were those from the previous Chapter. The first set of 

bispectra produced used a lag argument of 128, and the resulting mean-square error 

values are given here in Table 12. 
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SNR (dB) Mean-shifted exponential 

9.03 

-~ 

Mean-shifted Rayleigh 

data sequence 
6.5442 

SNR (dB) Mean-shifted exponential 

data sequence 

data sequence 
2.748 1 

Mean-shied Rayleigh 

data sequence 

I 6.02 I 7.5014 I 3.7146 
I 0 I 18.4954 I 13.7302 

-6.02 220.449 1 320.4302 

Table 12 Mean-square error for colored signals in Gaussian noise, 128 lags computed 

I 9.03 1 14.865 8 I 8.5169 
I 6.02 I 18.1758 I 11.4167 
I 0 I 54.331 1 I 54.7393 

~ -6.02 I 933.9822 1 1333.0 

Table 13 Mean-square error for colored signals in Gaussian noise, 256 lags computed 

3. Conclusions 

One immediate observation is that, for the bispectral estimations, the mean-square 

error values increase as the signal-to-noise ratio drops-dramatically as the S N R  goes to 

-6.02. This suggests that, at least with this bispectral estimator, Gaussian signals do not 

completely vanish at higher orders as theory predicts they should. 

As in the previous Chapter, it is also clear that the bispectrum of a signal 

ensemble generated with the mean-shifted exponential distribution is significantly 

different from that produced by a signal ensemble whose underlying distribution is the 

mean-shifted Rayleigh distribution. The bispectra of the mean-shifted exponential distri- 

bution contains many more visible signal components than those of the mean-shifted 

Rayleigh distribution. This is due to the fact that, for a given variance, the third-order 

cumulant of a signal with a mean-shifted exponential distribution is different from that of 

one with a mean-shifted Rayleigh distribution. This difference remained visually 
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-     - 

Mean-shifted exponential 

data sequence 

Mean-shifted Rayleigh 

data sequence 

9.03 6.5442 2.7481 

6.02 7.5014 3.7146 
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Table 12 Mean-square error for colored signals in Gaussian noise, 128 lags computed 

The second set of bispectra produced used a lag argument of 256. The mean- 

square values calculated for these estimates are given in Table 13. 

SNR (dB> Mean-shifted exponential 

data sequence 

Mean-shifted Rayleigh 

data sequence 
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-6.02 933.9822 1333.0 

Table 13 Mean-square error for colored signals in Gaussian noise, 256 lags computed 

3. Conclusions 

One immediate observation is that, for the bispectral estimations, the mean-square 

error values increase as the signal-to-noise ratio drops—dramatically as the SNR goes to 

-6.02. This suggests that, at least with this bispectral estimator, Gaussian signals do not 

completely vanish at higher orders as theory predicts they should. 

As in the previous Chapter, it is also clear that the bispectrum of a signal 

ensemble generated with the mean-shifted exponential distribution is significantly 

different from that produced by a signal ensemble whose underlying distribution is the 

mean-shifted Rayleigh distribution. The bispectra of the mean-shifted exponential distri- 

bution contains many more visible signal components than those of the mean-shifted 

Rayleigh distribution. This is due to the fact that, for a given variance, the third-order 

cumulant of a signal with a mean-shifted exponential distribution is different from that of 

one with a mean-shifted Rayleigh distribution. This difference remained visually 
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apparent even when the information-bearing signals were combined with Gaussian noise 

signals (see Appendix C). 

It is interesting to note that the mean-square error for mean-shifted exponentially- 

distributed signal ensembles were typically greater than those for mean-shifted Rayleigh- 

distributed ensembles. This is not the case, however, as the SNR drops from zero to 

-6.02, suggesting that while the mean-shifted Rayleigh distribution may be more useful 

at low signal-to-noise ratios, its relative utility drops significantly as the noise level gets 

stronger. 

A difference between Tables 12 and 13 which is not evident here is the amount of 

time required to generate the bispectral estimates; doubling the lag argument more than 

doubled the amount of time required to generate the bispectra. This is a result of the DFT 
calculations involved, and would obviously be a significant consideration in any real- 

world signal processing application. 

It is also evident, in comparing Tables 10 and 11 with Tables 12 and 13, that the 

error introduced goes up dramatically when bispectra are calculated, rather than just 

cumulant estimates. Also, of course, the time required to produce bispectral estimates is 

significantly greater as well. 

Returning to Tables 10 and 11, it is interesting to note that the percent error of the 

cumulant estimate remains fairly low for both distribution types, even as the variance of 

the noise signal is doubled and doubled again. This suggests that the third-order cumu- 

lant estimate does indeed have some resistance to Gaussian noise, and could be appro- 

priate for Gaussian noise mitigation. However, Tables 12 and 13 suggest that the 

bispectral estimation does not share this resistance, at least not to the same degree. 

It is difficult to draw an overall conclusion as to whether a mean-shifted exponen- 

tial distribution or a mean-shifted Rayleigh distribution would be preferable in an infor- 

mation-bearing signal (assuming that higher-order statistics were to be used in processing 

the signal). While the mean-square error is generally less for the mean-shifted Rayleigh 

signal, at least at high SNRs, the plots in Appendix C suggest that it would be difficult to 

distinguish the signal from the noise floor. The large mean-square error values, and the 

high variance of the plots produced by bispectral estimates, strongly suggest it would be 

preferable to work with cumulant estimates rather than bispectral estimates, if possible. 
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V. CONCLUSION 

As computing power continues to increase, signals become more complex and 

signal environments become more dense, it seems likely that interest in higher-order 

statistics will continue to increase. The efforts described here indicate some results which 

would be useful for anyone trying to implement a signal processing system (noise mitiga- 

tion or other) using higher-order statistics. Additionally, the work has pointed out some 

other issues which will need to be addressed before such a system could be designed. 

A. OVERALL CONCLUSIONS 

One of the two most significant conclusions uncovered here was that the length of 

the DFT used does not seem to significantly affect the mean-square error in bispectral 

estimation of colored signals. This is somewhat surprising, as increasing DFT length 

would be an immediate, intuitive step to improve spectral estimation. It might be 

explained, however, as an artifact of the estimation method used here. The datasets used 

in Chapters I11 and IV, based on the conclusions of Chapter 11, were 256 realizations of 

5 12 points each. As this matrix is fed into the indirect estimator, the cumulants are esti- 

mated and the Fourier transform is performed-including zero-padding if the DFT length 

is greater than that of the data. This could explain the diminishing returns exhibited in 

Tables 5 and 6 as the DFT length is increased beyond 512 (the sample realization size). 

Another useful (but perhaps intuitive) result is the amount of error introduced in 

performing bispectral estimation as opposed to the relatively simpler cumulant estima- 

tion. Chapter I11 details that the MATLAB bispeci estimator somehow introduces phase 

components to its estimates and the effort spent to remove these components. One of the 

often-touted advantages of higher-order statistics is that it is phase-blind [Ref. 7: p.31; in 

light of this fact the introduction of phase components by an application is a significant 

issue. 

Similarly, Chapter IV shows that even in the presence of noise, a cumulant esti- 

mate may be accurately calculated where a bispectral estimate will be greatly different 

from its theoretical value. These two observations strongly recommend that, if possible, 

any application be developed to operate solely on cumulant estimates, rather than bispec- 
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trum estimates. Naturally, the added computation-and time-involved in calculating 

bispectra would also recommend simply using cumulant estimates. 

The results of Chapter 111, and part of Chapter IV, also speak to the value of the 

mean-shifted Rayleigh distribution at higher orders, with respect to the mean-shifted 

exponential distribution. The mean-square error values calculated in both Chapters 

suggest that cumulant and bispectral estimates of data ensembles with a mean-shifted 

Rayleigh distribution are more accurate than those of data ensembles with a mean-shifted 

exponential distribution. The plots in Appendices B and C would seem to mitigate this 

conclusion somewhat, as the signal energy of the mean-shifted Rayleigh ensembles is 

much lower than that of the mean-shifted exponential ensembles. However, this is based 

simply on a visual examination of the plots, and any evaluation of the different distribu- 

tions for a practical application should be performed keeping in mind the needs of the 

application itself (i.e., the appearance of the bispectrum is irrelevant if the processor in 

question is able to distinguish the signal properly). 

Overall, the results seen here suggest that higher-order statistics continue to hold 

promise as a method for reducing the effects of Gaussian noise and interference. 

However, a number of additional questions will need to be answered before they can be 

used to construct an effective processing system for realistic signal environments. 

B. STEPS FOR FURTHER STUDY 

As discussed in Chapter I, the ultimate impetus behind this work was the possi- 

bility of a practical signal processing application, such as interference mitigation, using 

higher-order statistics. The conclusions arrived at here are useful pointers towards the 

development of such an application, but several intermediate steps would have to be 

performed before it could be realized. 

An obvious first step would be to study additional distributions. Just as the 

"mean-shifted" versions of exponential and Rayleigh distributions were generated by 

subtracting the mean from standard distributions, other such distributions can be gener- 

ated as well. As long as a distribution is asymmetric and zero-mean, its third-order cumu- 

lant can be theoretically predicted as in Chapter 11. A list of such distributions would be 

useful to select one with the strongest third-order presence (either its cumulant or its 
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trum estimates. Naturally, the added computation—and time—involved in calculating 

bispectra would also recommend simply using cumulant estimates. 
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exponential distribution. The mean-square error values calculated in both Chapters 
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simply on a visual examination of the plots, and any evaluation of the different distribu- 
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higher-order statistics. The conclusions arrived at here are useful pointers towards the 

development of such an application, but several intermediate steps would have to be 

performed before it could be realized. 

An obvious first step would be to study additional distributions. Just as the 

"mean-shifted" versions of exponential and Rayleigh distributions were generated by 

subtracting the mean from standard distributions, other such distributions can be gener- 

ated as well. As long as a distribution is asymmetric and zero-mean, its third-order cumu- 

lant can be theoretically predicted as in Chapter II. A list of such distributions would be 

useful to select one with the strongest third-order presence (either its cumulant or its 
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bispectral magnitude), to be used as an information-bearing signal in a Gaussian noise 

environment. 

If a likely candidate signal was determined, it would serve as the basis for devel- 

opment of the application itself (whether it be an active filter, demodulator, or other 

signal processing application, in hardware or in software). The combination of infoma- 

tion-bearing signal and expected application would dnve one of the next steps of analysis, 

which is a determination of the S N R  required given a signal and receiver type (i.e., a 

basic link budget). As seen in Chapter IV, background noiseeven Gaussian 

noise-takes a toll on a signal, whether at higher orders or not, and its effect must be 

taken into account in system design. 

If bispectral estimation (rather than simple cumulant estimation) were necessary, 

an additional study of value would be an examination of bispectral estimators which 

were not used here. In MATLAB, this would mean studying bispecd, an estimator using 

the "direct" method, and bispect, a parametric estimator. It would be of value both to 

gauge the accuracy of these methods with respect to each other, as well as to understand 

the processing requirements of each. (It may be that one is more suitable than the others 

for hardware acceleration, for example, and would make it a more desirable candidate.) 

If the bispeci function were to be utilized, as it was here, it would be necessary to under- 

stand exactly how the unwanted phase components are introduced, and how to remove 

them. This would be particularly necessary in any receiving or filtering application 

designed with modern communications systems in mind, as a large proportion of such 

systems use signal phase to carry information (e.g., the various types of phase-shift 

keying and quadrature-amplitude modulation schemes). 

Regardless of whether any of these avenues are pursued further, it seems clear that 

higher-order statistics will be continuing their progress from the purely theoretical 

domain, further and further into the realm of practical and valuable signal processing 

techniques. 
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APPENDIX A. MATLAB RESULTS FROM CHAPTER I1 

This Appendix contains detailed results of the procedure described in Chapter 11. 

It is divided into three Sections, each of which is grouped by one of the three statistics 

being examined (ensemble mean, ensemble variance, and ensemble third-order cumu- 

lant). Section A, for example, contains a plot showing the ensemble mean for each of the 

four distribution types examined, as the ensemble size was lengthened. In this way, the 

effects of changing the ensemble size could be studied both with respect to the statistic of 

interest and with respect to the distributions under study. 

A. Statistic: Mean 

Figures 8 through 11 demonstrate the effect of increasing the ensemble size on the 

average of the ensemble means. In each case, the expected value of the ensemble mean is 

zero (each ensemble comprises a series of realizations of zero-mean sequences-please 

see Appendix F for a description how a series of realizations is generated to produce an 

ensemble and, in turn, the statistics of interest). Please note that in these plots, as in the 

following ones, the expected value is indicated by a line of dots, spaced logarithmically. 

Figure 8 shows that the Gaussian distribution exhibits a small amount of "ringing" 

(overshoot of the expected value), but the absolute error is still never greater than 0.2. 

Regardless, the curve flattens out significantly, suggesting that for 5 12-point, Gaussian- 

distributed sequences, an ensemble of as few as 128 sequences is sufficient to produce a 

consistent mean estimate. 

Figure 9 shows that the uniform-distributed ensembles are also very close to their 

expected values even at short ensemble sizes. Even an ensemble length of just one reali- 

zation exhibits an absolute error of less than 0.1. Also, as with the Gaussian sequences, 

after some initial variation the mean estimates seem to approach their expected value 

asymptotically. While the values are "close enough" at just about any ensemble size, they 

are the most stable for ensemble lengths of 128 or more realizations. 

Figure 10 shows that, for the mean-shifted exponential distribution, the data 

follows the same general trend as that of the previous two plots. However, note that the 

scale is even smaller, less than 2 ~ 1 0 ' ~  at its largest. In this case, any ensemble size seems 
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APPENDIX A. MATLAB RESULTS FROM CHAPTER II 

This Appendix contains detailed results of the procedure described in Chapter II. 

It is divided into three Sections, each of which is grouped by one of the three statistics 

being examined (ensemble mean, ensemble variance, and ensemble third-order cumu- 

lant). Section A, for example, contains a plot showing the ensemble mean for each of the 

four distribution types examined, as the ensemble size was lengthened. In this way, the 

effects of changing the ensemble size could be studied both with respect to the statistic of 
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Figure 8 shows that the Gaussian distribution exhibits a small amount of "ringing" 

(overshoot of the expected value), but the absolute error is still never greater than 0.2. 

Regardless, the curve flattens out significantly, suggesting that for 512-point, Gaussian- 

distributed sequences, an ensemble of as few as 128 sequences is sufficient to produce a 

consistent mean estimate. 

Figure 9 shows that the uniform-distributed ensembles are also very close to their 

expected values even at short ensemble sizes. Even an ensemble length of just one reali- 

zation exhibits an absolute error of less than 0.1. Also, as with the Gaussian sequences, 

after some initial variation the mean estimates seem to approach their expected value 

asymptotically. While the values are "close enough" at just about any ensemble size, they 

are the most stable for ensemble lengths of 128 or more realizations. 

Figure 10 shows that, for the mean-shifted exponential distribution, the data 

follows the same general trend as that of the previous two plots. However, note that the 

scale is even smaller, less than 2x10''^ at its largest. In this case, any ensemble size seems 
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to produce a sufficiently accurate mean estimate, and for ensemble sizes of 64 or more 

realizations the mean estimates seem to approach their theoretical value. 

Figure 1 1, a plot of the ensemble mean estimates of the mean-shifted Rayleigh 

sequences, is at an even smaller scale, producing an absolute error of less than 8 ~ 1 0 - l ~  at 

its largest. The graph appears to demonstrate more "ringing" than any of the three 

previous plots-although the mean estimate oscillates around its predicted value, it does 

not ever seem to approach it asymptotically. However, when the small scale of the plot is 

considered, it becomes evident that the estimate at any ensemble size is highly accurate, 

and the oscillation is probably as much a function of the precision of the simulation, as it 

is of the math itself. In any case, an ensemble size of 64 realizations should be sufficient 

to produce accurate mean estimates. 
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to produce a sufficiently accurate mean estimate, and for ensemble sizes of 64 or more 

realizations the mean estimates seem to approach their theoretical value. 

Figure 11, a plot of the ensemble mean estimates of the mean-shifted Rayleigh 

sequences, is at an even smaller scale, producing an absolute error of less than 8x10'^* at 

its largest. The graph appears to demonstrate more "ringing" than any of the three 

previous plots—although the mean estimate oscillates around its predicted value, it does 

not ever seem to approach it asymptotically. However, when the small scale of the plot is 

considered, it becomes evident that the estimate at any ensemble size is highly accurate, 

and the oscillation is probably as much a function of the precision of the simulation, as it 

is of the math itself. In any case, an ensemble size of 64 realizations should be sufficient 

to produce accurate mean estimates. 
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Figure 1 1. Mean-shifted Rayleigh distribution, statistic: mean. 

B. Statistic: Variance 

Figures 12 through 15 plot the average values of the ensemble variances as a func- 

tion of ensemble length. In all four cases, the ensembles comprise realizations of 

sequences whose variances have been set to four; this is therefore the expected value in 

each case. 

Figure 12 shows the average value of the ensemble variance for Gaussian-distrib- 

uted sequences. It shows that for any ensemble length of a mere four realizations or more, 

the experimental error is less than one percent. As in the mean plots, the data points show 

some ringing but after a certain point converge on their expected value. In this case, an 

ensemble length of 128 points will certainly be more than adequate. 

Figure 13 shows similar behavior for the uniform-distributed sequences, with an 

ensemble length of eight or more realizations sufficing to produce less than one percent 

error. Again, at an ensemble length of 128 realizations, the plot seems to converge on its 

theoretical value. 

Figure 14, the variance estimates for the mean-shifted exponential sequences, 

shows an exponential decay of the variance towards its theoretical value (with the case of 
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Figure 11. Mean-shifted Rayleigh distribution, statistic: mean. 

B. Statistic: Variance 

Figures 12 through 15 plot the average values of the ensemble variances as a func- 

tion of ensemble length. In all four cases, the ensembles comprise realizations of 

sequences whose variances have been set to four; this is therefore the expected value in 

each case. 

Figure 12 shows the average value of the ensemble variance for Gaussian-distrib- 

uted sequences. It shows that for any ensemble length of a mere four realizations or more, 

the experimental error is less than one percent. As in the mean plots, the data points show 

some ringing but after a certain point converge on their expected value. In this case, an 

ensemble length of 128 points will certainly be more than adequate. 

Figure 13 shows similar behavior for the uniform-distributed sequences, with an 

ensemble length of eight or more realizations sufficing to produce less than one percent 

error. Again, at an ensemble length of 128 realizations, the plot seems to converge on its 

theoretical value. 

Figure 14, the variance estimates for the mean-shifted exponential sequences, 

shows an exponential decay of the variance towards its theoretical value (with the case of 
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an ensemble length of one as the exception). The error in this plot seems to remain larger 

for longer ensemble lengths than in any of the previous plots, remaining at greater than 

one percent until the ensemble length reaches 128 realizations. However, at this point, the 

error continues to shrink. 

Figure 15 shows that, compared to the previous plot, the mean-shifted Rayleigh 

sequences seem to meander a bit in their variance estimates, but nevertheless move 

towards their theoretical value. The plot demonstrates that an ensemble length of 256 or 

more realizations is sufficient to put the experimental error at less than one percent. 
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C. Statistic: Third-order cumulant estimate 

Figures 16 through 19 show the average values of the third-order cumulant esti- 

mates as a function of ensemble length. As noted above, for the symmetric Gaussian and 

uniform distributions (Figures 16 and 17, respectively), the expected value is zero. For 

the mean-shifted exponential distribution, the expected value is 16, and for the mean- 

shifted Rayleigh distribution, the expected value is approximately 5.043 (this is a trunca- 

tion of the calculated expected value). 

Figure 16 shows the third-order cumulant estimate for the series of Gaussian- 

distributed sequences, It shows some ringing as in the previous plots, with the mean 

calculated estimates closing to within an absolute error of less than 0.2 for any ensemble 

size of four or more realizations. To close to within an absolute error of 0.1 or less 

requires a minimum ensemble length of 256 realizations. 

Figure 17 shows the third-order cumulant estimates for the uniform-distributed 

sequences. Its plot approaches the theoretical value, although certainly not asymptoti- 

cally, and exhibits the interesting feature that all the error values (except for the last) are 

negative for some reason. At any rate, the absolute error remains at less than 0.1 for any 
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Figure 15. Mean-shifted Rayleigh distribution, statistic: variance. 
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ensemble length of 64 or more realizations. 

Figure 18 shows the third-order cumulant estimates for the mean-shifted exponen- 

tial distribution. Similarly to that of the variance estimates, the plot of the third-order 

cumulant estimates approaches its theoretical value in an exponential decay (again, 

ignoring the very first data point). In this case, the experimental error drops to within five 

percent for ensemble sizes of 64 or more realizations, and drops to within one percent for 

ensemble sizes of 256 or more realizations. 

Figure 19 shows the third-order cumulant estimates for the mean-shifted Rayleigh 

distribution. While this plot also closes in on its theoretical value, it does so in neither an 

oscillating nor an asymptotic fashion. It also never has one percent error or less, for any 

ensemble length examined (the maximum ensemble length here is 1024 realizations). 

However, once the ensemble length reaches 128 realizations, the experimental error is 

less than five percent and continues to shrink. 
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Figure 16. Gaussian distribution, statistic: third-order cumulant. 
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ensemble length of 64 or more realizations. 

Figure 18 shows the third-order cumulant estimates for the mean-shifted exponen- 

tial distribution. Similarly to that of the variance estimates, the plot of the third-order 
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However, once the ensemble length reaches 128 realizations, the experimental error is 

less than five percent and continues to shrink. 
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APPENDIX B. PLOTS FOR CHAPTER I11 

This Appendix contains detailed results of the procedure described in Chapter 111. 

It is divided into multiple Sections, each of which contains mesh plots of bispectral esti- 

mates of the four distributions for a particular set of bispeci parameters. The first 

Section, for example, contains plots of the bispectral estimates for the four distributions 

when bispeci is given a lag argument of 32 and its DFT length is allowed to remain as its 

default of 128. 

Additionally, the first six Sections contain bispectral estimates of white signals; 

i.e., those which have not been filtered. In the following eight Sections, the bispectral 

estimates were generated after the signal had been colored by passing it through the filter 

of Equation (8). 

A. Lag argument = 32, DFT length = 128, white signal 

Figures 20 through 23 show the calculated bispectra for the four white signal 

ensembles (i.e., those that have not been processed by the shaping filter), using a lag 

argument of 32. All of the other parameters passed to bispeci were the defaults, and 

setting the lag argument to 32 forced the DFT length to 128. 

Figure 20 shows the calculated bispectrum of the Gaussian-distributed ensemble. 

It is flat and has zero amplitude, as would be expected. 

Figure 21 shows the calculated bispectrum of the uniform-distributed ensemble. 

It, too, is flat and has zero amplitude. 

Figure 22 shows the calculated bispectrum of the mean-shifted exponentially- 

distributed ensemble. Also as predicted, this plot has a magnitude of 16, equal to its 

third-order cumulant (given a signal variance of four). This plot also seems to exhibit 

more ripple than the previous two. 

Figure 23 shows the calculated bispectrum of the mean-shifted Rayleigh-distrib- 

uted ensemble. As in Figure 22, this bispectrum shows some ripple but no obvious signal 

characteristics, and has a magnitude of approximately 5, as expected. 
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APPENDIX B. PLOTS FOR CHAPTER III 

This Appendix contains detailed results of the procedure described in Chapter III. 

It is divided into multiple Sections, each of which contains mesh plots of bispectral esti- 
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Figure 20 Bispectral estimate of Gaussian distribution, white signal. Estimate 

was generated with lag argument of 32 and a DFT length of 128. 

. . , .:. , . . . . . . .  . . .  . . .  . . . .  . . .  . .  .... . . .  ' .  . . . .  
, .  , .. 

. . .  , . .  
. . . . . . . .  . . . . . . .  ... . ' .  .., , 

. .  . . ' : ' . ,  
. . .  . . .  . .  . .  ' . .  

. . )  , .  

. . .  . . .  , ' .  . . .  .... . . . . .  . . .  . . .  . .  . . .  
. . . .  . .  . .  , 

, . .  
, . .  , .  

_ . .  

.... . . .  . . .  

, '.. 

. .  

0.5 

Figure 21 Bispectral estimate of uniform distribution, white signal. Estimate 

was generated with a lag argument of 32 and a DFT length of 128. 
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was generated with lag argument of 32 and a DFT length of 128. 
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Figure 21 Bispectral estimate of uniform distribution, white signal. Estimate 

was generated with a lag argument of 32 and a DFT length of 128. 
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Figure 22 Bispectral estimate of mean-shifted exponential distribution, white 

signal. Estimate was generated with a lag argument of 32 and a DFT length of 

128. 
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Figure 23 Bispectral estimate of mean-shifted Rayleigh distribution, white signal. 

Estimate was generated with a lag argument of 32 and a DFT length of 128. 
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Figure 22 Bispectral estimate of mean-shifted exponential distribution, white 

signal. Estimate was generated with a lag argument of 32 and a DFT length of 

128. 
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Figure 23 Bispectral estimate of mean-shifted Rayleigh distribution, white signal. 

Estimate was generated with a lag argument of 32 and a DFT length of 128. 
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B. Lag argument = 64, DFT length = 256, white signal 

Figures 24 through 27 show the calculated bispectra for the four white signal 

ensembles, using a lag argument of 64. All of the other parameters passed to bispeci 

were the defaults, and setting the lag argument to 64 forced the DFT length to 256. 

Figure 24 shows the calculated bispectrum of the Gaussian-distributed ensemble. 

While still flat and at zero amplitude, it does exhibit more ripple than it did with a lag 

argument of 32 (compare Figure 20). This is due to the increased variance caused by the 

use of longer lags. 

Figure 25 shows the calculated bispectrum of the uniform-distributed ensemble. 

It is also flat and has magnitude zero, but has more variance than the bispectrum depicted 

in Figure 2 1. 

Figure 26 shows the calculated bispectrum of the mean-shifted exponentially- 

distributed ensemble. The mean level of this signal remains at approximatelyl6; 

however, this bispectrum has a much greater variance than any of the other bispectra 

calculated with these parameters. This is evident in Figure 26, as the plot has a much 

more jagged appearance than the others. 

Figure 27 shows the calculated bispectrum of the mean-shifted Rayleigh-distrib- 

uted ensemble. This signal amplitude is also where theory says it should be. Also, while 

the variance is below that of the bispectral estimate of the mean-shifted exponential 

signal ensemble, it is still noticeably greater than that of either the Gaussian- or uniform- 

distributed ensemble. 
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Figure 24 Bispectral estimate of Gaussian distribution, white signal. Estimate was 

generated with a lag argument of 64 and a DFT length of 256. 

Figure 25 Bispectral estimate of uniform distribution, white signal. Estimate was 

generated with a lag argument of 64 and a DFT length of 256. 
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Figure 24 Bispectral estimate of Gaussian distribution, white signal. Estimate was 

generated with a lag argument of 64 and a DFT length of 256. 
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Figure 25 Bispectral estimate of uniform distribution, white signal.   Estimate was 

generated with a lag argument of 64 and a DFT length of 256. 
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Figure 26 Bispectral estimate of mean-shifted exponential distribution, white 

signal. Estimate was generated with a lag argument of 64 and a DFT length of 

256. 
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Figure 27 Bispectral estimate of mean-shifted Rayleigh distribution, white signal. 

Estimate was generated with a lag argument of 64 and a DFT length of 256. 
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Figure 26 Bispectral estimate of mean-shifted exponential distribution, white 

signal.   Estimate was generated with a lag argument of 64 and a DFT length of 

256. 
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Figure 27 Bispectral estimate of mean-shifted Rayleigh distribution, white signal. 

Estimate was generated with a lag argument of 64 and a DFT length of 256. 
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C. Lag argument = 128, DFT length = 512, white signal 

Figures 28 through 31 show the calculated bispectra for the four white signal 

ensembles, using a lag argument of 128. All of the other parameters passed to bispeci 

were the defaults, and setting the lag argument to 128 forced the DFT length to 512. 

Figure 28 shows the calculated bispectrum of the Gaussian-distributed ensemble. 

The signal floor remains at zero amplitude; however, as the variance has continued to 

increase, its effect has continued to be evident in the plots. 

Figure 29 shows the calculated bispectrum of the uniform-distributed ensemble. 

As in the case of the Gaussian-distributed signal, the floor remains at zero amplitude. 

Also as in the case of the Gaussian-distributed signal, the variance has obviously 

increased from previous estimates; compare Figure 25. 

Figure 30 shows the calculated bispectrum of the mean-shifted exponentially- 

distributed ensemble. The large variance of the estimate is even more evident than in 

previous plots. 

Figure 3 1 shows the calculated bispectrum of the mean-shifted Rayleigh-distrib- 

uted ensemble. The signal amplitude remains at approximately 5, where theory says it 

should be. Also as before, this bispectral estimate shows considerably less variance than 

that of the mean-shifted exponential ensemble (Figure 30), but considerably more than 

those of the Gaussian- and uniform-distributed ensembles (Figures 28 and 29, respec- 

tively). 
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Figure 28 Bispectral estimate of Gaussian distribution, white signal. Estimate 

was generated with a lag argument of 128 and a DFT length of 512. 
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Figure 29 Bispectral estimate of uniform distribution, white signal. Estimate was 

generated with a lag argument of 128 and a DFT length of 512. 
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Figure 28 Bispectral estimate of Gaussian distribution, white signal.   Estimate 

was generated with a lag argument of 128 and a DFT length of 512. 
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Figure 29 Bispectral estimate of uniform distribution, white signal. Estimate was 

generated with a lag argument of 128 and a DFT length of 512. 
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Figure 30 Bispectral estimate of mean-shifted exponential distribution, white 

signal. Estimate was generated with a lag argument of 128 and a DFT length of 

5 12. 
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Figure 3 1 Bispectral estimate of mean-shifted Rayleigh distribution, white signal. 

Estimate was generated with a lag argument of 128 and a DFT length of 512. 
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Figure 30 Bispectral estimate of mean-shifted exponential distribution, white 

signal. Estimate was generated with a lag argument of 128 and a DFT length of 

512. 
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Figure 31 Bispectral estimate of mean-shifted Rayleigh distribution, white signal. 

Estimate was generated with a lag argument of 128 and a DFT length of 512. 
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D. Lag argument = 256, DFT length = 1024, white signal 

Figures 32 through 35 show the calculated bispectra for the four white signal 

ensembles using a lag argument of 256. All of the other parameters passed to bispeci 

were the defaults, and setting the lag argument to 256 forced the DFT length to 1024. 

Figure 32 shows the calculated bispectrum of the Gaussian-distributed ensemble. 

The signal floor remains at zero amplitude. The peaks are not as evident as before 

(compare Figure 28), although the variance has continued to increase. The increase in 

estimate variance is evident in the fact that the noise "floor" gets thicker and thicker as 

the lag argument is increased. 

Figure 33 shows the calculated bispectrum of the uniform-distributed ensemble. 

The signal floor also remains at zero amplitude and, as in Figure 32, the peaks that were 

present in the previous estimate (Figure 29) seem to have disappeared. 

Figure 34 shows the calculated bispectrum of the mean-shifted exponentially- 

distributed ensemble, As usual, the bispectral estimate of the mean-shifted exponential 

signal ensemble shows a much greater variance than that of the other three distributions. 

Note that, as with the other three bispectral plots, the "floor" of this signal is thicker 

(although still centered at a magnitude of 16). 

Figure 35 shows the calculated bispectrum of the mean-shifted Rayleigh-distrib- 

uted ensemble. The bispectral amplitude remains at approximately 5, although it is more 

difficult to tell visually due to the increased variance in the estimate. 
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Figure 32 Bispectral estimate of Gaussian distribution, white signal. Estimate was 

generated with a lag argument of 256 and a DFT length of 1024. 
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Figure 33 Bispectral estimate of uniform distribution, white signal. Estimate was 

generated with a lag argument of 256 and a DFT length of 1024. 
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Figure 32 Bispectral estimate of Gaussian distribution, white signal. Estimate was 

generated with a lag argument of 256 and a DFT length of 1024. 
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Figure 33 Bispectral estimate of uniform distribution, white signal. Estimate was 

generated with a lag argument of 256 and a DFT length of 1024. 
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Figure 34 Bispectral estimate of mean-shifted exponential distribution, white 

signal. Estimate was generated with a lag argument of 256 and a DFT length of 

1024. 

Figure 35 Bispectral estimate of mean-shifted Rayleigh distribution, white signal. 

Estimate was generated with a lag argument of 256 and a DFT length of 1024. 
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Figure 34 Bispectral estimate of mean-shifted exponential distribution, white 

signal. Estimate was generated with a lag argument of 256 and a DFT length of 

1024. 
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Figure 35 Bispectral estimate of mean-shifted Rayleigh distribution, white signal. 

Estimate was generated with a lag argument of 256 and a DFT length of 1024. 
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E. Lag argument = 512, DFT length = 2048, white signal 

Figures 36 through 39 show the calculated bispectra for the four white signal 

ensembles, using a lag argument of 512. All of the other parameters passed to bispeci 

were the defaults, and setting the lag argument to 512 forced the DFT length to 2048. 

Figure 36 shows the calculated bispectrum of the Gaussian-distributed ensemble. 

This bispectral plot does not seem to be significantly different from that produced by 256 

lags (i-e., Figure 32). 

Figure 37 shows the calculated bispectrum of the uniform-distributed ensemble. 

As with the Gaussian-distributed signal, there is no noticeable difference between the 

bispectrum produced with 512 lags (i.e., Figure 37), and that produced with 256 lags (i.e., 

Figure 33). 

Figure 38 shows the calculated bispectrum of the mean-shifted exponentially- 

distributed ensemble. Although the variance is still very large, the increased DFT size 

appears to have smoothed the bispectrum somewhat, so that the large peaks are not as 

evident as they are in (for example) Figure 34. 

Figure 39 shows the calculated bispectrum of the mean-shifted Rayleigh-distrib- 

uted ensemble. As with the other three bispectral plots in this set, the plot of this bispec- 

tral estimate shows no distinctive peaks of energy. 
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Figure 36 Bispectral estimate of Gaussian distribution, white signal. Estimate was 

generated with a lag argument of 512 and a DFT length of 2048. 
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Figure 37 Bispectral estimate of uniform distribution, white signal. Estimate was 

generated with a lag argument of 512 and a DFT length of 2048. 
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Figure 36 Bispectral estimate of Gaussian distribution, white signal. Estimate was 

generated with a lag argument of 512 and a DFT length of 2048. 
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Figure 37 Bispectral estimate of uniform distribution, white signal. Estimate was 

generated with a lag argument of 512 and a DFT length of 2048. 
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Figure 38 Bispectral estimate of mean-shifted exponential distribution, white 

signal. Estimate was generated with a lag argument of 5 12 and a DFT length of 

2048. 
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Figure 39 Bispectral estimate of mean-shifted Rayleigh distribution, white signal. 

Estimate was generated with a lag argument of 512 and a DFT length of 2048. 

63 

30 

25 

20 

15 Si, 

10 

5 

u. 
,,, . .■.ii;M#.) 1 

-0.5     -0.5 

Figure 38 Bispectral estimate of mean-shifted exponential distribution, white 

signal. Estimate was generated with a lag argument of 512 and a DFT length of 

2048. 
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Figure 39 Bispectral estimate of mean-shifted Rayleigh distribution, white signal. 

Estimate was generated with a lag argument of 512 and a DFT length of 2048. 
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F. Lag argument = 256, DFT length = 2048, white signal 

Figures 40 through 43 show the calculated bispectra for the four white signal 

ensembles. In this case, the lag argument has been returned to 256. However, the DFT 

length has been increased to a length of 2048. (Had it not been explicitly set, the DFT 

length would have defaulted to 1024 points.) All of the other parameters passed to 

bispeci remained as the defaults. 

Figure 40 shows the calculated bispectrum of the Gaussian-distributed ensemble. 

Returning the lag argument to 256 seems to have brought back a few bins of energy 

poking up above the noise floor. 

Figure 41 shows the calculated bispectrum of the uniform-distributed ensemble. 

While this signal floor remains at zero amplitude, the peak energy seen here is higher 

than that of the Gaussian-distributed signal. 

Figure 42 shows the calculated bispectrum of the mean-shifted exponentially- 

distributed ensemble, Returning the lag argument to 256 has caused the signal peaks in 

this bispectral display to become obvious again (compare Figures 39 and 35). 

Figure 43 shows the calculated bispectrum of the mean-shifted Rayleigh-distrib- 

uted ensemble. The increased DFT size seems to have drawn signal energy of some sort 

up out of the floor in this case as well. 

Judging solely by the numbers in Table 5, the results depicted in Figures 40 

through 43 should be largely indistinguishable from those seen in Figures 32 through 35. 

This prediction seems largely borne out by a cursory visual examination of the plots. 

This fact, coupled with the results of Table 5, suggests that the DFT length is largely 

irrelevant to the mean of the bispectral estimate of a white signal. 
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Figure 40 Bispectral estimate of Gaussian distribution, white signal. Estimate was 

generated with a lag argument of 256 and a DFT length of 2048. 
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Figure 41 Bispectral estimate of uniform distribution, white signal. Estimate was 

generated with a lag argument of 256 and a DFT length of 2048. 
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Figure 40 Bispectral estimate of Gaussian distribution, white signal. Estimate was 

generated with a lag argument of 256 and a DFT length of 2048. 
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Figure 41 Bispectral estimate of uniform distribution, white signal. Estimate was 

generated with a lag argument of 256 and a DFT length of 2048. 
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Figure 42 Bispectral estimate of mean-shifted exponential distribution, white 

signal. Estimate was generated with a lag argument of 256 and a DFT length of 

2048. 
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Figure 43 Bispectral estimate of mean-shifted Rayleigh distribution, white signal. 

Estimate was generated with a lag argument of 256 and a DFT length of 2048. 
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Figure 42 Bispectral estimate of mean-shifted exponential distribution, white 

signal. Estimate was generated with a lag argument of 256 and a DFT length of 

2048. 
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Figure 43 Bispectral estimate of mean-shifted Rayleigh distribution, white signal. 

Estimate was generated with a lag argument of 256 and a DFT length of 2048. 
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G. Lag argument = 32, DFT length = 128, colored signal ( p = 0.25) 

Figures 44 through 47 show the bispectral estimates of the datasets after they have 

been passed through the filter of Equation (8) with a parameter p of 0.25. 

In this case, the bispectrum has been estimated with bispeci, which has been given 

a lag argument of 32 and an DFT length of 128. All the other bispeci parameters have 

been allowed to remain as their defaults. 

Figure 44 shows the calculated bispectrum of the colored Gaussian-distributed 

ensemble. The filter does not appear to have had a significant effect, as the bispectrum is 

flat and has zero magnitude. 

Figure 45 shows the calculated bispectrum of the colored uniform-distributed data 

ensemble. It too, as predicted, has zero magnitude and is flat. 

Figure 46 shows the bispectral estimate of the mean-shifted exponential signal 

ensemble, after the signal has been processed by the filter. It shows that the filter has 

indeed shaped the bispectrum, as the signal peaks well up from its third-order cumulant 

value of 16. It is instructive to compare Figure 45 with Figure 21 which shows the plot of 

the identical (but unfiltered) signal ensemble, generated with the same parameters passed 

to bispeci. 

Figure 47 shows the bispectral estimate of the mean-shifted Rayleigh signal 

ensemble, after the signal has been processed by the filter. As with the exponentially- 

distributed signal ensemble, the filter has obviously shaped the bispectrum here as well, 

although it is not as pronounced as in the case of the mean-shifted exponential distribu- 

tion. Again, comparison is instructive. Figure 23 shows the (flat) bispectrum produced by 

the same signal ensemble, with the same parameters passed to bispeci. But where Figure 

23 is flat, Figure 47 shows definite signal energy. The floor of this estimate is just below 

its theoretical value of 5.04 as well. 
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Figure 44 Bispectral estimate of Gaussian distribution, colored signal (j3 = 0.25). 

Estimate was generated with a lag argument of 32 and a DFT length of 128. 
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Figure 45 Bispectral estimate of uniform distribution, colored signal (j3 = 0.25). 
Estimate was generated with a lag argument of 32 and a DFT length of 128. 
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Figure 44 Bispectral estimate of Gaussian distribution, colored signal (P = 0.25). 

Estimate was generated with a lag argument of 32 and a DFT length of 128. 
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Figure 45 Bispectral estimate of uniform distribution, colored signal ((} = 0.25). 

Estimate was generated with a lag argument of 32 and a DFT length of 128. 

68 



, . ... , , . .  . . . . .  . .  . . .  . ' . .  ... . . .  . . .  
. .  

... . ... . 
. ' . .  . . i . ,  

. , .  

. .  , 

. . .  , .. 
. . .  .. I . .  

, . . . "  
. . .  ... . . .  

_ . .  
. , . .  . ... 

-0.5 -0.5 

Figure 46 Bispectral estimate of mean-shifted exponential distribution, 

colored signal (p = 0.25). Estimate was generated with a lag argument of 32 

and a DFT length of 128. 

Figure 47 Bispectral estimate of mean-shifted Rayleigh distribution, colored 

signal (p = 0.25). Estimate was generated with a lag argument of 32 and a 

DFT length of 128. 
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Figure 46 Bispectral estimate of mean-shifted exponential distribution, 

colored signal (P = 0.25). Estimate was generated with a lag argument of 32 

and a DFT length of 128. 
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Figure 47 Bispectral estimate of mean-shifted Rayleigh distribution, colored 

signal (P = 0.25). Estimate was generated with a lag argument of 32 and a 

DFT length of 128. 
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H. Lag argument = 64, DFT length = 256, colored signal ( p = 0.25) 

Figures 48 through 5 1 show the bispectral estimates of the colored signals gener- 

ated when bispeci has been given a lag argument of 64 and a DFT length of 256. All the 

other bispeci parameters have been allowed to remain as their defaults. 

Figure 48 shows the calculated bispectrum of the colored Gaussian-distributed 

ensemble. The filter does not appear to have had a significant effect, as the bispectrum is 

flat and has zero magnitude. 

Figure 49 shows the calculated bispectrum of the colored uniform-distributed data 

ensemble. It too, as predicted, has zero magnitude and is flat, although a little ripple is 

evident . 
Figure 50 shows the bispectral estimate of the mean-shifted exponential signal 

ensemble, after the signal has been processed by the filter. It shows that the filter has 

shaped this bispectrum as well, as the signal peaks well up from its third-order cumulant 

value of 16. 

Figure 51 shows the bispectral estimate of the mean-shifted Rayleigh signal 

ensemble, after the signal has been processed by the filter. As with the exponentially- 

distributed signal ensemble, the filter has obviously shaped the bispectrum here as well, 

although again, it is not as pronounced as in the case of the mean-shifted exponential 

distribution. 
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ensemble, after the signal has been processed by the filter. As with the exponentially- 

distributed signal ensemble, the filter has obviously shaped the bispectrum here as well, 

although again, it is not as pronounced as in the case of the mean-shifted exponential 

distribution. 
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Figure 48 Bispectral estimate of Gaussian distribution, colored signal (p = 0.25). 

Estimate was generated with a lag argument of 64 and a DFT length of 256. 
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Figure 49 Bispectral estimate of uniform distribution, colored signal (p = 0.25). 
Estimate was generated with a lag argument of 64 and a DFT length of 256. 
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Figure 48 Bispectral estimate of Gaussian distribution, colored signal (p = 0.25). 

Estimate was generated with a lag argument of 64 and a DFT length of 256. 
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Figure 49 Bispectral estimate of uniform distribution, colored signal (P = 0.25). 

Estimate was generated with a lag argument of 64 and a DFT length of 256. 
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Figure 50 Bispectral estimate of mean-shifted exponential distribution, 

colored signal (0 = 0.25). Estimate was generated with a lag argument of 64 

and a DFT length of 256. 
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Figure 5 1 Bispectral estimate of mean-shifted Rayleigh distribution, colored 

signal (p = 0.25). Estimate was generated with a lag argument of 64 and a 

DFT length of 256. 
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Figure 50 Bispectral estimate of mean-shifted exponential distribution, 

colored signal (P = 0.25). Estimate was generated with a lag argument of 64 

andaDFTlengthof256. 
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Figure 51 Bispectral estimate of mean-shifted Rayleigh distribution, colored 

signal (P = 0.25). Estimate was generated with a lag argument of 64 and a 

DFT length of 256. 
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I. Lag argument = 128, DFT length = 512, colored signal ( p = 0.25) 

Figures 52 through 55 show the bispectral estimates of the colored signals gener- 

ated when bispeci has been given a lag argument of 128 and a DFT length of 512. All the 

other bispeci parameters have been allowed to remain as their defaults. 

Figure 52 shows the calculated bispectrum of the colored Gaussian-distributed 

ensemble. The bispectrum of the Gaussian ensemble, as before, remains flat and has zero 

magnitude. 

Figure 53 shows the calculated bispectrum of the colored uniform-distributed data 

ensemble. It too, as predicted, has zero magnitude and is flat. 

Figure 54 shows the bispectral estimate of the mean-shifted exponential signal 

ensemble, after the signal has been processed by the filter. It shows that the filter has 

significantly shaped this bispec trum. 

Figure 55 shows the bispectral estimate of the mean-shifted Rayleigh signal 

ensemble, after the signal has been processed by the filter. As with the exponentially- 

distributed signal ensemble, the filter has obviously shaped the bispectrum here as well, 

although as before, it is not as pronounced as in the case of the mean-shifted exponential 

distribution. 
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Figure 52 Bispectral estimate of Gaussian distribution, colored signal (p = 0.25). 

Estimate was generated with a lag argument of 128 and a DFT length of 512. 
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Figure 53 Bispectral estimate of uniform distribution, colored signal (p = 0.25). 

Estimate was generated with a lag argument of 128 and a DFT length of 512. 
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Figure 52 Bispectral estimate of Gaussian distribution, colored signal ((3 = 0.25). 

Estimate was generated with a lag argument of 128 and a DFT length of 512. 
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Figure 53 Bispectral estimate of uniform distribution, colored signal ((3 = 0.25). 

Estimate was generated with a lag argument of 128 and a DFT length of 512. 
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Figure 54 Bispectral estimate of mean-shifted exponential distribution, 

colored signal (p = 0.25). Estimate was generated with a lag argument of 

128 and a DFT length of 512. 
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Figure 55 Bispectral estimate of mean-shifted Rayleigh distribution, colored 

signal (p = 0.25). Estimate was generated with a lag argument of 128 and a 

DFT length of 512. 
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Figure 54 Bispectral estimate of mean-shifted exponential distribution, 

colored signal (P = 0.25). Estimate was generated with a lag argument of 

128 and a DFT length of 512. 
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Figure 55 Bispectral estimate of mean-shifted Rayleigh distribution, colored 

signal (P = 0.25), Estimate was generated with a lag argument of 128 and a 

DFTlengthof512. 
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J. Lag argument = 256, DFT length = 1024, colored signal ( p = 0.25) 

Figures 56 through 59 show the bispectral estimates of the colored signals gener- 

ated when bispeci has been given a lag argument of 256 and a DFT length of 1024. All 

the other bispeci parameters have been allowed to remain as their defaults. 

Figure 56 shows the calculated bispectrum of the colored Gaussian-distributed 

ensemble. The bispectrum of this dataset remains flat and has zero magnitude. 

Figure 57 shows the calculated bispectrum of the colored uniform-distributed data 

ensemble, It too, as predicted, has zero magnitude and is flat, although a little ripple is 

evident . 
Figure 58 shows the bispectral estimate of the mean-shifted exponential signal 

ensemble, after the signal has been processed by the filter. The peaks seen in previous 

plots (compare Figure 54) seem less distinct in this plot, possibly as a result of the 

increased variance due to increased data length. It is still apparent that the filter has 

shaped the signal, though, especially in comparison with Figures 56 and 57. 

Figure 59 shows the bispectral estimate of the mean-shifted Rayleigh signal 

ensemble, after the signal has been processed by the filter. The effects of the filtering are 

less pronounced here as well, although still evident. 
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Figure 56 Bispectral estimate of Gaussian distribution, colored signal (p = 0.25). 

Estimate was generated with a lag argument of 256 and a DFT length of 1024. 
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Figure 57 Bispectral estimate of uniform distribution, colored signal (p = 0.25). 

Estimate was generated with a lag argument of 256 and a DFT length of 1024. 
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Figure 56 Bispectral estimate of Gaussian distribution, colored signal ((3 = 0.25). 

Estimate was generated with a lag argument of 256 and a DFT length of 1024. 
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Figure 57 Bispectral estimate of uniform distribution, colored signal (P = 0.25). 

Estimate was generated with a lag argument of 256 and a DFT length of 1024. 
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Figure 58 Bispectral estimate of mean-shifted exponential distribution, 

colored signal (p = 0.25). Estimate was generated with a lag argument of 

256 and a DFT length of 1024. 
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Figure 59 Bispectral estimate of mean-shifted Rayleigh distribution, colored 

signal (p = 0.25). Estimate was generated with a lag argument of 256 and a 

DFT length of 1024. 
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Figure 58 Bispectral estimate of mean-shifted exponential distribution, 

colored signal ((3 = 0.25). Estimate was generated with a lag argument of 

256 and a DFT length of 1024. 
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Figure 59 Bispectral estimate of mean-shifted Rayleigh distribution, colored 

signal (P = 0.25). Estimate was generated with a lag argument of 256 and a 

DFT length of 1024. 
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K. Lag argument = 512, DFT length = 2048, colored signal ( p = 0.25) 

Figures 60 through 63 show the bispectral estimates of the colored signals gener- 

ated when bispeci has been given a lag argument of 512 and a DFT length of 2048. All 

the other bispeci parameters have been allowed to remain as their defaults. 

Figure 60 shows the calculated bispectrum of the colored Gaussian-distributed 

ensemble. This signal shows what appear to be bins of energy; these are artifacts of the 

increased variance due to the greater signal length. 

Figure 6 1 shows the calculated bispectrum of the colored uniform-distributed data 

ensemble. The increased variance is even more evident here than in Figure 60, although 

the signal overall remains at zero and is essentially flat. 

Figure 62 shows the bispectral estimate of the mean-shifted exponential signal 

ensemble, after the signal has been processed by the filter, The greater variance continues 

to swamp the shaping effects of the filter. 

Figure 63 shows the bispectral estimate of the mean-shifted Rayleigh signal 

ensemble, after the signal has been processed by the filter. The signal energy, which 

should be evident, is here almost invisible as the variance causes the plot to become more 

and more jagged. 
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Figure 60 Bispectral estimate of Gaussian distribution, colored signal (0 = 0.25). 

Estimate was generated with a lag argument of 512 and a DFT length of 2048. 
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Figure 61 Bispectral estimate of uniform distribution, colored signal (p = 0.25). 

Estimate was generated with a lag argument of 512 and a DFT length of 2048. 
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Figure 60 Bispectral estimate of Gaussian distribution, colored signal (P = 0.25). 

Estimate was generated witii a lag argument of 512 and a DFT length of 2048. 
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Figure 61 Bispectral estimate of uniform distribution, colored signal (P = 0.25). 

Estimate was generated with a lag argument of 512 and a DFT length of 2048. 
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Figure 62 Bispectral estimate of mean-shifted exponential distribution, 

colored signal (p = 0.25). Estimate was generated with a lag argument of 

512 and a DFT length of 2048. 
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Figure 63 Bispectral estimate of mean-shifted Rayleigh distribution, colored 

signal (p = 0.25). Estimate was generated with a lag argument of 512 and a 

DFT length of 2048. 
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Figure 62 Bispectral estimate of mean-shifted exponential distribution, 

colored signal (p = 0.25). Estimate was generated with a lag argument of 

512 and a DFT length of 2048. 
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Figure 63 Bispectral estimate of mean-shifted Rayleigh distribution, colored 

signal (P = 0.25). Estimate was generated with a lag argument of 512 and a 

DFT length of 2048. 
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L. Lag argument = 1024, DFT length = 4096, colored signal ( p = 0.25) 

Figures 64 through 67 show the bispectral estimates of the colored signals gener- 

ated when bispeci has been given a lag argument of 1024 and a DFT length of 4096. All 

the other bispeci parameters have been allowed to remain as their defaults. 

The plots here are largely indistinguishable from the previous four (Figures 60- 

63). As the lag argument and DFT size has continued to grow, so has the variance of the 

bispectral estimate, In the cases of the Gaussian and uniform distributions, this has 

resulted in the appearance of spikes of signal energy where there should be none. In the 

cases of the mean-shifted exponential and mean-shifted Rayleigh distributions, this has 

made the signal energy which is present, less distinguishable from the noise floor. 

Figure 64 shows the calculated bispectrum of the colored Gaussian-distributed ensemble. 

The filter does not appear to have had a significant effect, as the bispectrum is flat and 

has zero magnitude. 
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Figure 64 Bispectral estimate of Gaussian distribution, colored signal (p = 0.25). 

Estimate was generated with a lag argument of 1024 and a DFT length of 4096. 
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Figure 64 Bispectral estimate of Gaussian distribution, colored signal ((3 = 0.25). 

Estimate was generated with a lag argument of 1024 and a DFT length of 4096. 

82 



, ... . . '  

0.5 

-0.5 '-0.5 

Figure 65 Bispectral estimate of uniform distribution, colored signal (p = 0.25). 

Estimate was generated with a lag argument of 1024 and a DFT length of 4096. 
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Figure 66 Bispectral estimate of mean-shifted exponential distribution, colored 

signal (p = 0.25). Estimate was generated with a lag argument of 1024 and a DFT 

length of 4096. 
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Figure 65 Bispectral estimate of uniform distribution, colored signal (P = 0.25). 

Estimate was generated with a lag argument of 1024 and a DFT length of 4096. 
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Figure 66 Bispectral estimate of mean-shifted exponential distribution, colored 

signal (P = 0.25). Estimate was generated with a lag argument of 1024 and a DFT 

length of 4096. 
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Figure 67 Bispectral estimate of mean-shifted Rayleigh distribution, colored signal 

(p = 0.25). Estimate was generated with a lag argument of 1024 and a DFT length 

of 4096. 
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Figure 67 Bispectral estimate of mean-shifted Rayleigh distribution, colored signal 

(p = 0.25). Estimate was generated with a lag argument of 1024 and a DFT length 

of 4096. 
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M. Lag argument = 128, DFT length = 1024, colored signal ( p = 0.25) 

Figures 68 through 71 show the bispectral estimates of the colored signals gener- 

ated when the lag argument to bispeci has been returned to 128, but the DFT length is 

increased to 1024. It is useful to compare these plots to those of Figures 52 through 55, 

in which the lag argument was 128 but the DFT size was the default of 512. In each case, 

the plot with the increased DFT length is largely the same as that generated with a shorter 

DFT length. This is in keeping with the result suggested earlier, that DFT length is not 

terribly significant (at least, it does not seem so when visually comparing bispectral esti- 

mates). 

Figure 68 shows the calculated bispectrum of the colored Gaussian-distributed 

ensemble. The filter does not appear to have had a significant effect, as the bispectrum is 

flat and has zero magnitude. 

Figure 69 shows the calculated bispectrum of the colored uniform-distributed data 

ensemble. It too, as predicted, has zero magnitude and is flat, although a little ripple is 

evident. 

Figure 70 shows the bispectral estimate of the mean-shifted exponential signal 

ensemble, after the signal has been processed by the filter. It shows that the filter has 

shaped this bispectrum as well, as the signal peaks well up from its third-order cumulant 

value. 

Figure 7 1 shows the bispectral estimate of the mean-shifted Rayleigh signal 

ensemble, after the signal has been processed by the filter. As with the exponentially- 

distributed signal ensemble, the filter has obviously shaped the bispectrum here as well, 

although again, it is not nearly as pronounced as it is in the case of the mean-shifted expo- 

nential distribution. 

85 

M. Lag argument = 128, DFT length = 1024, colored signal ( p = 0.25) 

Figures 68 through 71 show the bispectral estimates of the colored signals gener- 

ated when the lag argument to bispeci has been returned to 128, but the DFT length is 

increased to 1024. It is useful to compare these plots to those of Figures 52 through 55, 

in which the lag argument was 128 but the DFT size was the default of 512. In each case, 

the plot with the increased DFT length is largely the same as that generated with a shorter 

DFT length. This is in keeping with the result suggested earlier, that DFT length is not 

terribly significant (at least, it does not seem so when visually comparing bispectral esti- 

mates). 

Figure 68 shows the calculated bispectrum of the colored Gaussian-distributed 

ensemble. The filter does not appear to have had a significant effect, as the bispectrum is 

flat and has zero magnitude. 

Figure 69 shows the calculated bispectrum of the colored uniform-distributed data 

ensemble. It too, as predicted, has zero magnitude and is flat, although a Uttle ripple is 

evident. 

Figure 70 shows the bispectral estimate of the mean-shifted exponential signal 

ensemble, after the signal has been processed by the filter. It shows that the filter has 

shaped this bispectrum as well, as the signal peaks well up from its third-order cumulant 

value. 

Figure 71 shows the bispectral estimate of the mean-shifted Rayleigh signal 

ensemble, after the signal has been processed by the filter. As with the exponentially- 

distributed signal ensemble, the filter has obviously shaped the bispectrum here as well, 

although again, it is not nearly as pronounced as it is in the case of the mean-shifted expo- 

nential distribution. 

85 



-0.5 -0.5 

Figure 68 Bispectral estimate of Gaussian distribution, colored signal (p = 0.25). 

Estimate was generated with a lag argument of 128 and a DFT length of 1024. 
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Figure 69 Bispectral estimate of uniform distribution, colored signal (p = 0.25). 

Estimate was generated with a lag argument of 128 and a DFT length of 1024. 
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Figure 68 Bispectral estimate of Gaussian distribution, colored signal (p = 0.25). 

Estimate was generated with a lag argument of 128 and a DFT length of 1024. 
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Figure 69 Bispectral estimate of uniform distribution, colored signal (P = 0.25). 

Estimate was generated with a lag argument of 128 and a DFT length of 1024. 
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Figure 70 Bispectral estimate of mean-shifted exponential distribution, 

colored signal (p = 0.25). Estimate was generated with a lag argument of 

128 and a DFT length of 1024. 

Figure 7 1 Bispectral estimate of mean-shifted Rayleigh distribution, colored 

signal (p = 0.25). Estimate was generated with a lag argument of 128 and a 

DFT length of 1024. 
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Figure 70 Bispectral estimate of mean-shifted exponential distribution, 

colored signal (P = 0.25). Estimate was generated with a lag argument of 

128 and a DFT length of 1024. 
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Figure 71 Bispectral estimate of mean-shifted Ray lei gh distribution, colored 

signal (p = 0.25). Estimate was generated with a lag argument of 128 and a 

DFT length of 1024. 
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N. Lag argument = 128, DFT length = 2048, colored signal ( p = 0.25) 

Figures 72 through 75 show the bispectral estimates of the colored signals gener- 

ated when the lag argument to bispeci has been held at 128, but the DFT length is 

increased to 2048. As before, it is useful to compare these plots to those of Figures 52 

through 55 ,  in which the lag argument was 128 but the DFT size was the default of 512. 

Also as in the previous case, increasing the DFT length did not seem to significantly 

change the bispectrum. 

Figure 72 shows the calculated bispectrum of the colored Gaussian-distributed 

ensemble. The filter does not appear to have had a significant effect, as the bispectrum is 

flat and has zero magnitude. 

Figure 73 shows the calculated bispectrum of the colored uniform-distributed data 

ensemble. It also has zero magnitude and is flat. 

Figure 74 shows the bispectral estimate of the mean-shifted exponential signal 

ensemble, after the signal has been processed by the filter. It shows that the filter has 

shaped this bispectrum to a noticeable degree. 

Figure 75 shows the bispectral estimate of the mean-shifted Rayleigh signal 

ensemble, after the signal has been processed by the filter. The filter has obviously 

shaped this signal as well, although not to the extent of the mean-shifted exponential 

signal. 
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Also as in the previous case, increasing the DFT length did not seem to significantly 

change the bispectrum. 

Figure 72 shows the calculated bispectrum of the colored Gaussian-distributed 

ensemble. The filter does not appear to have had a significant effect, as the bispectrum is 

flat and has zero magnitude. 

Figure 73 shows the calculated bispectrum of the colored uniform-distributed data 

ensemble. It also has zero magnitude and is flat. 

Figure 74 shows the bispectral estimate of the mean-shifted exponential signal 

ensemble, after the signal has been processed by the filter. It shows that the filter has 

shaped this bispectrum to a noticeable degree. 

Figure 75 shows the bispectral estimate of the mean-shifted Rayleigh signal 

ensemble, after the signal has been processed by the filter. The filter has obviously 

shaped this signal as well, although not to the extent of the mean-shifted exponential 

signal. 
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Figure 72 Bispectral estimate of Gaussian distribution, colored signal (p = 0.25). 

Estimate was generated with a lag argument of 128 and a DFT length of 2048. 
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Figure 73 Bispectral estimate of uniform distribution, colored signal (p = 0.25). 

Estimate was generated with a lag argument of 128 and a DFT length of 2048. 
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Figure 72 Bispectral estimate of Gaussian distribution, colored signal (P = 0.25). 

Estimate was generated with a lag argument of 128 and a DFT length of 2048. 
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Figure 73 Bispectral estimate of uniform distribution, colored signal (p = 0.25). 

Estimate was generated with a lag argument of 128 and a DFT length of 2048. 
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Figure 74 Bispectral estimate of mean-shifted exponential distribution, 

colored signal (p = 0.25). Estimate was generated with a lag argument of 

128 and a DFT length of 2048. 
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Figure 75 Bispectral estimate of mean-shifted Rayleigh distribution, colored 

signal (p = 0.25). Estimate was generated with a lag argument of 128 and a 

DFT length of 2048. 
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Figure 74 Bispectral estimate of mean-shifted exponential distribution, 

colored signal (P = 0.25). Estimate was generated with a lag argument of 

128 and a DFT length of 2048. 
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Figure 75 Bispectral estimate of mean-shifted Rayleigh distribution, colored 

signal (P = 0.25). Estimate was generated with a lag argument of 128 and a 

DFT length of 2048. 
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APPENDIX C. PLOTS FOR CHAPTER IV 

This Appendix contains detailed results of the procedure described in Chapter IV. 

In Chapter IV, the two data ensembles with asymmetric distributions (mean-shifted expo- 

nential and mean-shifted Rayleigh) were colored with a filter and then added to Gaussian 

noise signals of varying strengths. The bispectral estimates of the resulting signal and 

noise ensembles were then generated using bispeci, and mesh plots of these estimates are 

given in this Appendix. 

A. Mean-shifted exponential distribution, lag argument = 128, colored signal 

Figures 76 through 80 show the estimated bispectra of the mean-shifted exponen- 

tially-distributed dataset, after it has been run through a filter (with parameter p equal to 

0.1). The bispectral estimates in this case were generated with bispeci, which was given 

a lag argument of 128 (all other parameters were left to their defaults). As in the previous 

plots in the Appendices, these are magnitude plots of bispectral estimates with phase 

components introduced by the bispeci function. 

Figure 76 shows the original signal, with no noise signal added. It is the same as 

Figure 54, scaled to the same axes as Figures 77 through 80, and is included for refer- 

ence. 

Figure 77 shows the bispectral estimate when the original colored signal is added 

to a Gaussian noise signal with a variance of 0.5. The bispectrum here looks essentially 

the same as that shown in Figure 76; the only obvious difference is that the entire signal 

level seems to have been raised somewhat by the additive noise, as would be expected. 

Figure 78 shows the bispectral estimate when the original colored signal is added 

to a Gaussian noise signal with unity variance. Again, the signal level seems to have 

risen slightly-but in this case it is evident that the outermost peaks of signal energy have 

begun to disappear into the rising noise floor. 

Figure 79 shows the bispectral estimate when the original colored signal is added 

to a Gaussian noise signal with variance four. The increased noise variance is evident as 

the bispectral floor becomes even more jagged. The signal energy peaks appear to have 

been raised somewhat; however, they have also moved as a result of coupling with the 
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noise signal. 

Figure 80 shows the bispectral estimate when the original colored signal is added 

to a Gaussian noise signal with variance 16. Here, the increased variance is immediately 

evident, as is the fact that the signal energy is spread around the spectrum. 
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Figure 76 Bispectral estimate of mean-shifted exponentially-distributed signal in 

no noise. 

92 

noise signal. 

Figure 80 shows the bispectral estimate when the original colored signal is added 

to a Gaussian noise signal with variance 16. Here, the increased variance is immediately 

evident, as is the fact that the signal energy is spread around the spectrum. 
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Figure 76 Bispectral estimate of mean-shifted exponentially-distributed signal in 

no noise. 
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Figure 77 Bispectral estimate of mean-shifted exponentially-distributed signal in 

noise with variance = 0.5. 
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Figure 78 Bispectral estimate of mean-shifted exponentially-distributed signal in 

noise with variance = 1. 
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Figure 77 Bispectral estimate of mean-shifted exponentially-distributed signal in 

noise with variance = 0.5. 
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Figure 78 Bispectral estimate of mean-shifted exponentially-distributed signal in 

noise with variance = 1. 
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Figure 79 Bispectral estimate of mean-shifted exponentially-distributed signal in 

noise with variance = 4. 
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Figure 80 Bispectral estimate of mean-shifted exponentially-distributed signal in 

noise with variance = 16. 
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Figure 79 Bispectral estimate of mean-shifted exponentially-distributed signal in 

noise with variance = 4. 
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Figure 80 Bispectral estimate of mean-shifted exponentially-distributed signal in 

noise with variance =16. 
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B. Mean-shifted Rayleigh distribution, lag argument = 128, colored signal 

Figures 81 through 85 show the estimated bispectra of the mean-shifted Rayleigh- 

distributed dataset, after it has been run through a filter (with parameter p equal to 0.1). 

The bispectral estimates in this case were generated with bispeci, which was given a lag 

argument of 128 (all other parameters were left to their defaults). As in the previous plots 

in the Appendices, the bispectral estimates shown in these plots had phase components 

introduced by the bispeci function, but the plots here are of the magnitudes of the esti- 

mates. 

Figure 81 shows the original signal, with no noise signal added. It is the same as 

Figure 55,  scaled to the same axes as Figures 82 through 85, and is included for refer- 

ence. As in Chapter 111, it is evident that a signal with the mean-shifted Rayleigh distribu- 

tion does not show up as well as one with a mean-shifted exponential distribution. 

Figure 82 shows the bispectral estimate when the original colored signal is added 

to a Gaussian noise signal with a variance of 0.5. The bispectrum here looks essentially 

the same as that shown in Figure 81, although there is some evident spreading of the 

signal energy caused by the noise signal. 

Figure 83 shows the bispectral estimate when the original colored signal is added 

to a Gaussian noise signal with unity variance. It looks essentially the same as Figure 82, 

and shows the same low signal level and slight degree of spreading. 

Figure 84 shows the bispectral estimate when the original colored signal is added 

to a Gaussian noise signal with variance four. Here, the increased noise strength is some- 

what more evident, in the form of increased variance in the noise floor. There are also a 

few bins of energy visible above the noise floor. While some of them would appear to 

correspond to the signal itself, others are obviously simply the effects of the noise. 

Figure 85 shows the bispectral estimate when the original colored signal is added 

to a Gaussian noise signal with variance 16. As in the case of the mean-shifted exponen- 

tial signals, the effects of raising the noise strength this much are immediately obvious. 

There does appear to be some signal energy at the center of plot. 
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Figure 8 1 Bispectral estimate of mean-shifted Rayleigh distributed signal in no 

noise. 
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Figure 82 Bispectral estimate of mean-shifted Rayleigh distributed signal in noise 

with variance = 0.5. 
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Figure 81 Bispectral estimate of mean-shifted Rayleigh distributed signal in no 

noise. 
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Figure 82 Bispectral estimate of mean-shifted Rayleigh distributed signal in noise 

with variance = 0.5. 
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Figure 83 Bispectral estimate of mean-shifted Rayleigh distributed signal in noise 

with variance = 1. 
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Figure 84 Bispectral estimate of mean-shifted Rayleigh distributed signal in noise 

with variance = 4. 
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Figure 83 Bispectral estimate of mean-shifted Rayleigh distributed signal in noise 

with variance = 1. 
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Figure 84 Bispectral estimate of mean-shifted Rayleigh distributed signal in noise 

with variance = 4. 
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Figure 85 Bispectral estimate of mean-shifted Rayleigh distributed signal in noise 

with variance = 16. 

C. Mean-shifted exponential distribution, lag argument = 256, colored signal 

Figures 86 through 90 show the estimated bispectra of the mean-shifted exponen- 

tially-distributed dataset, after it has been run through a filter (with parameter p equal to 

0.1). The bispectral estimates in this case were generated with bispeci, which was given 

a lag argument of 256 (all other parameters were left to their defaults). As in the previous 

plots in the Appendices, these are magnitude plots of bispectral estimates with phase 

components introduced by the bispeci function. 

Figure 86 shows the original signal, with no noise signal added. It is the same as 

Figure 58, scaled to the same axes as Figures 87 through 90, and is included for refer- 

ence. 

Figure 87 shows the bispectral estimate when the original colored signal is added 

to a Gaussian noise signal with a variance of 0.5. The bispectrum here looks essentially 

the same as that shown in Figure 86; the only obvious difference is that the entire signal 

level seems to have been raised somewhat by the additive noise, as would be expected. It 

appears that the signal energy in the center has also been smeared somewhat by the addi- 
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Figure 85 Bispectral estimate of mean-shifted Rayleigh distributed signal in noise 

with variance =16. 
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tive noise. 

Figure 88 shows the bispectral estimate when the original colored signal is added 

to a Gaussian noise signal with unity variance. The signal is still largely unchanged from 

the previous two plots. 

Figure 89 shows the bispectral estimate when the original colored signal is added 

to a Gaussian noise signal with variance four. The original signal energy is still visible in 

the center of the plot. The additive noise has raised its level somewhat; however, it has 

obviously also raised the noise floor significantly, and coupled with the mean-shifted 

exponential signal as well. 

Figure 90 shows the bispectral estimate when the original colored signal is added 

to a Gaussian noise signal with variance 16. The effects of increasing the noise strength 

are vividly evident in this plot, as the variance of the bispectral estimate has hidden any 

signal energy that might be present. 

Figure 86 Bispectral estimate of mean-shifted exponentially distributed signal in 

no noise. 
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live noise. 

Figure 88 shows the bispectral estimate when the original colored signal is added 

to a Gaussian noise signal with unity variance. The signal is still largely unchanged from 
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to a Gaussian noise signal with variance four. The original signal energy is still visible in 

the center of the plot. The additive noise has raised its level somewhat; however, it has 

obviously also raised the noise floor significantly, and coupled with the mean-shifted 

exponential signal as well. 

Figure 90 shows the bispectral estimate when the original colored signal is added 

to a Gaussian noise signal with variance 16. The effects of increasing the noise strength 

are vividly evident in this plot, as the variance of the bispectral estimate has hidden any 

signal energy that might be present. 
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Figure 86 Bispectral estimate of mean-shifted exponentially distributed signal in 

no noise. 
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Figure 87 Bispectral estimate of mean-shifted exponentially distributed signal in 

noise with variance = 0.5. 
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Figure 88 Bispectral estimate of mean-shifted exponentially distributed signal in 

noise with variance = 1. 
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Figure 87 Bispectral estimate of mean-shifted exponentially distributed signal in 

noise with variance = 0.5. 
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Figure 88 Bispectral estimate of mean-shifted exponentially distributed signal in 

noise with variance = 1. 
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Figure 89 Bispectral estimate of mean-shifted exponentially distributed signal in 

noise with variance = 4. 
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Figure 90 Bispectral estimate of mean-shifted exponentially distributed signal in 

noise with variance = 16. 
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Figure 89 Bispectral estimate of mean-shifted exponentially distributed signal in 

noise with variance = 4. 
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Figure 90 Bispectral estimate of mean-shifted exponentially distributed signal in 

noise with variance = 16. 
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D. Mean-shifted Rayleigh distribution, lag argument = 256, colored signal 

Figures 91 through 95 show the estimated bispectra of the mean-shifted Rayleigh- 

distributed dataset, after it has been run through a filter (with parameter p equal to 0.1). 

The bispectral estimates in this case were generated with bispeci, which was given a lag 

argument of 256 (all other parameters were left to their defaults). As in the previous plots 

in the Appendices, these are magnitude plots of bispectral estimates with phase compo- 

nents introduced by the bispeci function. 

Figure 91 shows the original signal, with no noise signal added. It is the same as 

Figure 60, scaled to the same axes as Figures 92 through 95, and is included for refer- 

ence. 

Figure 92 shows the bispectral estimate when the original colored signal is added 

to a Gaussian noise signal with a variance of 0.5. What signal energy was evident in 

Figure 91 appears to have vanished in this plot. 

Figure 93 shows the bispectral estimate when the original colored signal is added 

to a Gaussian noise signal with unity variance. The signal is still largely unchanged from 

that shown in Figures 91 and 92, although the increasing variance in the bispectral esti- 

mate is just starting to be apparent. 

Figure 94 shows the bispectral estimate when the original colored signal is added 

to a Gaussian noise signal with variance four. It is still difficult to distinguish any signal 

components here, but the increased noise strength is continuing to cause the variance (and 

the mean) of the noise floor to grow. 

Figure 95 shows the bispectral estimate when the original colored signal is added 

to a Gaussian noise signal with variance 16. As in Figure 90, the large noise strength 

dominates any signal components that might be visible in the bispectrum (and there had 

been almost none visible before the noise floor was raised). 
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Figure 9 1 Bispectral estimate of mean-shifted Rayleigh distributed signal in no 

noise. 
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Figure 92 Bispectral estimate of mean-shifted Rayleigh distributed signal in noise 

with variance = 0.5. 
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Figure 91 Bispectral estimate of mean-siiifted Rayleigh distributed signal in no 

noise. 
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Figure 92 Bispectral estimate of mean-shifted Rayleigh distributed signal in noise 

with variance = 0.5. 
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Figure 93 Bispectral estimate of mean-shifted Rayleigh distributed signal in noise 

with variance = 1. 
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Figure 94 Bispectral estimate of mean-shifted Rayleigh distributed signal in noise 

with variance = 4. 
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Figure 93 Bispectral estimate of mean-shifted Rayleigh distributed signal in noise 

with variance = 1. 
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Figure 94 Bispectral estimate of mean-shifted Rayleigh distributed signal in noise 

with variance = 4. 
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Figure 95 Bispectral estimate of mean-shifted Rayleigh distributed signal in noise 

with variance = 16. 
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Figure 95 Bispectral estimate of mean-shifted Rayleigh distributed signal in noise 

with variance =16. 
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APPENDIX D. GENERAL EXPRESSIONS FOR THIRD-ORDER CUMULANTS 

This Appendix contains a derivation of a general expression for the third-order 

cumulant of a zero-mean independent, identically-distributed ("i.i.d.") process. The 

calculations here demonstrate why the expected values given in Table 1 are scalars. 

Let x,, xj, and Xk be samples from any zero-mean i.i.d. process. Then the third- 

order cumulant is given by [Ref. 71 as 

( X i ,  X j  , X k ) = E  { X i X j  Xk } -E { Xi} .E { X j  Xk } -E { X j  } -E { Xi Xk } 
(D.1) -E { Xk }*E {Xi Xi } +2E { Xi}*E { X j  } *E { xk } , 

where E{ Xi} is expectation (thus the above terms are the first, second, and third moments 

of the process). 

Now for a zero mean process, E{ Xi} = E{ Xj} = E{ xk} = 0. Therefore, Equation 

(D.1) reduces to 

C ~ ( X ~ , X , , X ~ ) = E { X ~ X , X ~ } .  (D.2) 
Since the samples are independent, we can write 

E{xi}.E{xj}-E{xk}for i # j # k  

E { x i  } .E { x; } 
E { x ; >  for i= j = k  . 

(D.3) for i# j =  k E { x i x j x k }  = 

Since the samples have zero mean, the above result is zero 

Thus we can write 

C: (x i  , x, , x k )  = o( ti ( i -  j )  ti ( i -  

where 

o(=E{$}.  

n all except for the last case. 
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APPENDIX D. GENERAL EXPRESSIONS FOR THIRD-ORDER CUMULANTS 

This Appendix contains a derivation of a general expression for the third-order 

cumulant of a zero-mean independent, identically-distributed ("i.i.d.") process. The 

calculations here demonstrate why the expected values given in Table 1 are scalars. 

Let Xi, Xj, and Xk be samples from any zero-mean i.i.d. process. Then the third- 

order cumulant is given by [Ref. 7] as 

CfM^Xj,Xk)=E{x,XjX^}-E{x,}-E{XjX,}-E{Xj}-E{x,x^} 

-E{x,}-E{x,Xj}+2E{x,}'E{Xj}-E{x,}, 

where E{Xi} is expectation (thus the above terms are the first, second, and third moments 

of the process). 

Now for a zero mean process, E{xi} = E{xj} = E{xk} = 0. Therefore, Equation 

(D.l) reduces to 

Cl{xi,Xj,x^)=E {x^XjX,^}. (D.2) 

Since the samples are independent, we can write 

{ 
E{Xi}E{Xj}E{x^}for i^j^k 

E{x^x^Xf,} = ^        E{x^YE{x]} for   ii^j^k (DJ) 

E{x]} for   i=j=k . 

Since the samples have zero mean, the above result is zero in all except for the last case. 

Thus we can write 

C\{Xi,Xj,x^)=a.5{i- j)5[i-k) ^4^ 

where 

a=E{x]}. ^j)5) 
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APPENDIX E. THEORETICAL THIRD-ORDER CUMULANT EXPRESSIONS 
FOR DISTRIBUTIONS USED IN THIS THESIS 

This Appendix contains derivations for the expected third-order cumulants of the 

four distributions used throughout this study. In the cases of the mean-shifted exponen- 

tial and mean-shifted Rayleigh distributions, it also examines the effects that biasing the 

distribution has on its probability density function. 

A. Normal (Gaussian) distribution 

Given a mean p and variance 02, the probability density function of a normal 

(Gaussian) distribution hnction is given by [Ref. 51: 
- ( x -  Ir )2 . . .  

1 

and its third-order cumulant (and every odd cumulant) is zero due to the symmetric nature 

of the distribution. Recall that for this procedure p = 0 and o2 = 4; in the case of the 

normal distribution these values are simply provided to MATLAB during the sequence 

generation. 

B. Uniform distribution 

Given a mean p and variance 02, the probability density h c t i o n  of a uniform 

(rectangular) distribution function is given by [Ref. 51: 

where a is the lower limit and b is the upper limit of the distribution. The mean of a 

uniform distribution is (a + b)/2 and forcing zero mean (p = 0) requires that a = 4; i.e., a 

and b are on opposite sides of and equidistant from zero. 

The variance of the uniform distribution is given by [Ref. 51: 

2 ( b - a ) 2 - b 2  -- 
12 3 ’ c r =  

and for o2 = 4 we require a=-b=2 6 . 
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APPENDIX E. THEORETICAL THIRD-ORDER CUMULANT EXPRESSIONS 
FOR DISTRIBUTIONS USED IN THIS THESIS 

This Appendix contains derivations for the expected third-order cumulants of the 

four distributions used throughout this study. In the cases of the mean-shifted exponen- 

tial and mean-shifted Rayleigh distributions, it also examines the effects that biasing the 

distribution has on its probabiUty density function. 

A. Normal (Gaussian) distribution 

Given a mean |j, and variance d^, the probability density function of a normal 

(Gaussian) distribution fimction is given by [Ref. 5]: 

f^{x)   =   —^e ''"^'     for -oo<;c<oo, (E.l) 
a \J27T 

and its third-order cumulant (and every odd cumulant) is zero due to the symmetric nature 

of the distribution. Recall that for this procedure ^i = 0 and a^ = 4; in the case of the 

normal distribution these values are simply provided to MATLAB during the sequence 

generation. 

B. Uniform distribution 

Given a mean \i and variance a^ the probability density function of a uniform 

(rectangular) distribution function is given by [Ref. 5]: 

{ 
-—a      foTa<x<b 

0 otherwise 

where a is the lower limit and b is the upper limit of the distribution. The mean of a 

uniform distribution is (a + b)/2 and forcing zero mean (\x = 0) requires that a = -b; i.e., a 

and b are on opposite sides of and equidistant fi^om zero. 

The variance of the uniform distribution is given by [Ref. 5]: 

2   {b-af    b' ,      , 
a =^=y  . (E.3) 

and for CT^ = 4 we require   a=—b=2^  . 
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Because the uniform distribution is symmetric about its mean (here, zero), it also 

has the property that its third- (and every odd-)order moment is zero. 

C. Mean-shifted exponential distribution 

Given a mean p and variance 02, the probability density function of an (unaltered) 

exponential distribution function is given by [Ref. 51: 

where h is the parameter of the distribution. 

The mean of an unaltered exponential-distributed sequence is l/h. In order to 

force the mean to zero, llh is simply subtracted from the probability density function, 

biasing it across the zero point. The probability density h c t i o n  of this new "mean- 

shifted exponential" sequence is then given by 

A 
0 otherwise 

This new sequence is zero-mean, but retains the variance of the unaltered exponential 

sequence which is o2 = l/h2. Again, forcing the variance to be 4 requires that h take a 

specific value, in this case 0.5. 

The r'-order cumulant (r > 1) is given by [Ref. 51: 

and thus the third-order cumulant is equal to 2/h3. When h is set to 0.5, as it is here, the 

third-order cumulant evaluates to 16. 

D. Mean-shifted Rayleigh distribution 

Given a mean p and variance 02, the probability density function of an (unaltered) 

Rayleigh distribution function is defined as [Ref. 51: 
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Because the uniform distribution is symmetric about its mean (here, zero), it also 

has the property that its third- (and every odd-)order moment is zero. 

C. Mean-shifted exponential distribution 

Given a mean \i and variance a^, the probability density function of an (unaltered) 

exponential distribution function is given by [Ref. 5]: 

{ ^"^^ ' ^ 0        forx<0 

where X is the parameter of the distribution. 

The mean of an imaltered exponential-distributed sequence is l/X. In order to 

force the mean to zero, l/X is simply subtracted from the probability density function, 

biasing it across the zero point. The probability density fimction of this new "mean- 

shifted exponential" sequence is then given by 

{ 
,     -A(;c+1) c        ^~1 Ae forx>—— 

/wW=        < ^     . (E.5) 
0 otherwise 

This new sequence is zero-mean, but retains the variance of the unaltered exponential 

sequence which is cj^ = VX^. Again, forcing the variance to be 4 requires that X take a 

specific value, in this case 0.5. 

The r*-order cumulant (r > 1) is given by [Ref. 5]: 

C;(x,x,...x,_.)=(r-l)!|-^)   , (E.6) -"i^) • 
and thus the third-order cumulant is equal to 2/X^. When X is set to 0.5, as it is here, the 

third-order cumulant evaluates to 16. 

D. Mean-shifted Rayleigh distribution 

Given a mean \i and variance a^, the probability density function of an (unaltered) 

Rayleigh distribution function is defined as [Ref 5]: 
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-.X2 

for x> 0 x262  
be 

0 otherwise 
f&) = 

where b is a scale parameter and defines the shape of the curve. The mean of an unaltered 

Rayleigh-distributed sequence is b J n / 2 .  

The variance of an unaltered Rayleigh-distributed sequence is given by [Ref. 51. 

As in the previous examples, a sequence with a variance of four is desired. For o2 = 4, b 

has a value of J 4 / ( 2 - [ w )  Y which evaluates to approximately 3.0528. 

The standard (unaltered) Rayleigh distribution is nonzero mean. It was desired to 

have two asymmetric (exponential and Rayleigh) distributions to compare to the 

symmetric Gaussian and uniform distributions; however, all the sample sequences needed 

to be zero-mean. Therefore, as with the exponential distribution, the Rayleigh distribution 

had its mean subtracted to bias it about the zero point. 

When the mean is subtracted from the standard Rayleigh function, the probability 

density function produced is 

and, just as in the case of the mean-shifted exponential distribution, the variance of this 

sequence is unchanged. 

The r*-order moment of a Rayleigh-distributed sequence is given by [Ref. 51: 

03.9) 

where T(c) denotes the standard gamma function. Now the third-order cumulant will be, 

in the zero-mean case, the same as the third-order moment, which is given by 

E { x3 =( d%)3 (!) T(;)-  ( b3-3 fie(0.88623)) , 

where the last term is the truncated evaluation of the gamma function. 

(E.lO) 
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— e^* forx>0 /-n n\ 

0 otherwise 

where 6 is a scale parameter and defines the shape of the curve. The mean of an unaltered 

Rayleigh-distributed sequence is    b ^n/2. 

The variance of an unaltered Rayleigh-distributed sequence is given by [Ref 5]. 

As in the previous examples, a sequence with a variance of four is desired. For G^ = 4,b 

has a value of   V4/(2-[TT/2]),  which evaluates to approximately 3.0528. 

The standard (unaltered) Rayleigh distribution is nonzero mean. It was desired to 

have two asymmetric (exponential and Rayleigh) distributions to compare to the 

symmetric Gaussian and uniform distributions; however, all the sample sequences needed 

to be zero-mean. Therefore, as with the exponential distribution, the Rayleigh distribution 

had its mean subtracted to bias it about the zero point. 

When the mean is subtracted from the standard Rayleigh function, the probability 

density function produced is 

\^ 0 otherwise 

and, just as in the case of the mean-shifted exponential distribution, the variance of this 

sequence is unchanged. 

The r*-order moment of a Rayleigh-distributed sequence is given by [Ref. 5]: 

E{/}H^bn^)r[^), (E.9) 

where Y{c) denotes the standard gamma fimction. Now the third-order cimiulant will be, 

in the zero-mean case, the same as the third-order moment, which is given by 

£{x^} = (V26f(|)r(|)-(6^-3V2-(0.88623)), (^.10) 

where the last term is the truncated evaluation of the gamma function. 
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As in the preceding examples, the requirement of a specific variance forces the 

scale parameter b to a specific value as well, which in turn dictates the third-order cumu- 

lant. In this case, the third-order cumulant of a zero-mean Rayleigh-distributed sequence 

with variance C T ~  = 4 is approximately b = 5.04739. 
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As in the preceding examples, the requirement of a specific variance forces the 

scale parameter 6 to a specific value as well, which in turn dictates the third-order cumu- 

lant. hi this case, the third-order cumulant of a zero-mean Rayleigh-distributed sequence 

with variance a^ = 4 is approximately b = 5.04739. 
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APPENDIX F. FLOW DIAGRAM OF MATLAB SIMULATIONS 

3 

3 
‘ 3  1 

c 2  1 

3 

This Appendix details the flow of the MATLAB script used in Chapter 11. The 

script itself is in Appendix G, and was used to generate mean, variance, and third-order 

cumulant estimates for ensembles of varying sizes of each of the four distributions exam- 

ined here. 

I. First, an ensemble of m realizations is created. Each realization is of length n 

and is distributed according to the desired PDF (e.g., Gaussian, uniform, mean-shifted 

exponential, or mean-shifted Rayleigh). 

II. Next, a subset of each realization in the ensemble is used to generate an esti- 

mate of the mean, variance, and third-order cumulant estimate of the sequence. This 

produces m mean estimates (p11-bl), m variance estimates (011-0~~)~ and m third-order 

cumulant estimates (c’~ 1-c3,,,1). 

III. The m estimates of each statistic are then averaged to produce mean values of 

the sequence mean, variance, and third-order cumulant estimate. These three value are 

then saved. 
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APPENDIX F. FLOW DIAGRAM OF MATLAB SIMULATIONS 

This Appendix details the flow of the MATLAB script used in Chapter II. The 

script itself is in Appendix G, and was used to generate nnean, variance, and third-order 

cumulant estimates for ensembles of varying sizes of each of the four distributions exam- 

ined here. 

I. First, an ensemble of m realizations is created. Each realization is of length n 

and is distributed according to the desired PDF (e.g., Gaussian, uniform, mean-shifted 

exponential, or mean-shifted Rayleigh). 

A 'x„ ^12 X,3      ••• 

X21 ^22 X23      ••■ 

X3, X32 ^33      ••• 

\^XmJ Xm2 Xm3     ••• 

>-/« 

''2n 

>-i/i 
(F.l) 

■/ 

n. Next, a subset of each realization in the ensemble is used to generate an esti- 

mate of the mean, variance, and third-order cumulant estimate of the sequence. This 

produces m mean estimates (|aii-^mi), m variance estimates (aii-cJi„i), and m third-order 

cumulant estimates (c^i-c^mi). 

/ 

\ 

{•^21        •^22/ 

^\i 

'•23 

133 

mi 

C/«\ 

"•In 

^3n 

I 

^mn 

Mn o-n c'u 

>"21 0-21 
3 

y"3i 0-3, ci, 

\M ml or 

(F.2) 

ml ■-ml i 

m. The m estimates of each statistic are then averaged to produce mean values of 

the sequence mean, variance, and third-order cumulant estimate. These three value are 

then saved. 
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{x31 x32) x33 ” *  X3n 
. ... . 

IV. The size of the subset is then increased exponentially, and the process is 

repeated, yielding a new mean value for the sequence mean, variance, and third-order 

cumulant estimate. 

x12 

x 2 2  

’32 

Xm2 

‘13 

‘23 

x 3 3  

Xm3 

...} 

...} 

...} 

...} 
... 

Xmn 

P 12 

P 22 

P 32 

P m2 

0 12 

(T 22 

32 

m2 

3 

3 

3 
‘32 

c12 

c 2 2  

3 
Cm2 

1 1 1  

V. As the subset size is increased exponentially (base 2) from 1 to m, the resultant 

matrix grows to become size 3m. It consists of three column vectors, each representing a 

statistic (mean, variance, or third-order cumulant estimate) as the subset size is increased. 

This provides a good measure for the effects of increased realization length (sample size) 

without producing a different sample set for each realization. These vectors may be 

plotted logarithmically against sequence length to illustrate the effects of increased reali- 

zation length. 
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^ml I 

TV. The size of the subset is then increased exponentially, and the process is 

repeated, yielding a new mean value for the sequence mean, variance, and third-order 

cumulant estimate. 
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cr, 

a. cl} 

V. As the subset size is increased exponentially (base 2) from 1 to m, the resultant 

matrix grows to become size 3m. It consists of three column vectors, each representing a 

statistic (mean, variance, or third-order cumulant estimate) as the subset size is increased. 

This provides a good measure for the effects of increased realization length (sample size) 

without producing a different sample set for each realization. These vectors may be 

plotted logarithmically against sequence length to illustrate the effects of increased reali- 

zation length. 
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APPENDIX G. MATLAB CODE 

A. MATLAB script from Chapter I1 

% (This is the script used to generate the values for phase I) 

clear sequence; 

clear averages; 

clear variances; 

clear estimates; 

clear estimate2; 

% Instead of generating an ensemble (and its third-order cumulant esti- 
mate) 
% for each desired length, we will generate a full ensemble of 1024 
% realizations (sequences) and generate estimates for lengths of 
% (1, 2, 4, 8 . . .  512, 1024). 

€or index = 1:1024, 

sequence(:,index) = rpiid-var(n,type14); 

end 

% Now we have an array ('ensemble') consisting o f  1024 elements, each 
% o f  which is an n-point sample ('realization') of iid variables 
% distributed according to the type specified. 

% The next step w j l I  be to grab subsets of these 1024 512-point 
sequences, 
% and generate mean, variance, and third-order cumulant estimates for 
the subsets. 

a = (0:10 

b = 2.^a; 

€or index 

I 

= 1:11, 

115 

APPENDIX G. MATLAB CODE 

A. MATLAB script from Chapter II 

% (This is the script used to generate the values for phase I) 

clear sequence; 

clear averages; 

clear variances; 

clear estimates; 

clear estimate2; 

% Instead of generating an ensemble (and its third-order cumulant esti-^ 

mate) 

% for each desired length, we will generate a full ensemble of 1024 

% realizations (sequences) and generate estimates for lengths of 

% (1, 2, 4, 8. . . 512, 1024) . 

for index = 1:1024, 

sequence(:,index) = rpiid_var(n,type,4); 

end 

% Now we have an array ('ensemble') consisting of 1024 elements, each 

% of which is an n-point sample {'realization') of iid variables 

% distributed according to the type specified. 

% The next step will be to grab subsets of these 1024 512-point 

sequences, 

% and generate mean, variance, and third-order cumulant estimates for 

the subsets. 

a = (0:10) ; 

b = 2.*a; 

for index = 1:11, 
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averages (index) = mean (mean (sequence ( : I 1 : b (index) ) ) ) ; 

variances (index) = mean (var (sequence ( : ,1: b (index) 1 ; 

for index2 = 1 : b (index) I 

estimate2 (index2) = cumest (sequence ( : , index2 I 3 ; 

end 

estimates (index) = mean(estimate2) ; 

end 

B. MATLAB FUNCTION rpiid-var 

function [seq] = rpiid-var (nsamp, in-type,var) 

% 

% rpiid-var - a program to generate sequences of a specified 
% probability density function, w i t h  a specified variance. 
% 

% Syntax: 
% 

% 

% 

% 

% 

% 

% 

% 

95 

% 

% 

% 

5; 

% 

3- 

% 

% 

% 

[seql = rpiid-var (nsamp, in-type,var) ; 

where 

seq = output sequence 

nsamp = number of samples to be generated 
in-type = string specifying pdf to be generated, either: 

'nor' for Gaussian/normal, 
'uni' for uniform/rectangular, 
'expi for exponential, 
' h '  for "shifted" exponential 
'lap' for Laplace, 
'ray' for Rayleigh, 
' t w o '  for "two-sided Rayleigh" (zero -mean), or 
I s for "shifted" Rayleigh (zero-mean) 

var = desired variance 
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averages {index) = mean (mean (sequence (-., 1: b {index)))) ; 

variances(index) = mean(var(sequence(:,l:b(index)))); 

for index2 = l:b(index), 

estimate2(index2) = cumest(sequence(:,index2),3); 

end 

estimates(index) = mean(estimate2); 

end 

B. MATLAB FUNCTION rpiid_var 

function   [seq]   =  rpiid_var(nsamp,in_type,var) 

% 
% rpiid_var - a program to generate sequences of a specified 

% probability density function, with a specified variance. 

% 

% Syntax: 

% 

%     [seq]   =  rpiid_var(nsamp,in_type,var); 

% 

%    where 

% 
%     seq = output sequence 

% 

%    nsamp = number of samples to be generated 

%     in type = string specifying pdf to be generated, either: 

% 'nor' for Gaussian/normal, 

% 'uni' for uniform/rectangular, 

% 'exp' for exponential, 

% 'h'   for "shifted" exponential 

% 'lap' for Laplace, 

% 'ray' for Rayleigh, 

% 'two' for "two-sided Rayleigh" (zero-mean), or 

% 's'   for "shifted" Rayleigh (zero-mean) 

%    var = desired variance 
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% 

% 

% 

% 

% 

% 

% 

% 
0 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

The mean of a Gaussian, uniform, or Laplace sequence 
generated here is zero. The mean of a Rayleigh sequence 
works out to something like sqrt ((pi*var)/ (4 - pi)) where 
'var' is the variance you specify. (so unity variance 
produces a mean of 1.91, for example). The mean of an 
exponential sequence i s  the square root of the specified 
variance. 

For the "shifted" versions of Rayleigh and exponential, 
the mean of the sequence is calculated and subtracted. 
This is a quick and dirty way to provide a zero-mean but 
asymmetric sequence. In both cases the variance remains 
as specified. 

The "two-sided" version of a Rayleigh sequence is created 
by generating a Rayleigh sequence and negating every other 
value. It just provides another zero-mean, symmetric 
sequence (variance argument here is no longer valid). 

As in the original rpiid, only the first character of 
in-type is checked. 

% Don Green 
% NPS/DoD Distance Learning 
9; 24 April 2000/last updated 9 June 2000 

pdf = in-type (1) ; 

Uniform distribution uses MATLAB's built-in rand function, 
and subtracts 0 . 5  to make it zero-mean. The sequence is 
then multiplied by the square root of 12 * (the desired 
variance) which sets the variance. 

Normal (Gaussian) distribution uses MATLABIS built-in 
randn function (which is already zero-mean, unity variance). 
Multiplying the sequence by the square root of the desired 
variance sets the variance to the correct value. 

% 

% The mean of a Gaussian, uniform, or Laplace sequence 

% generated here is zero.  The mean of a Rayleigh sequence 

% works out to something like sqrt((pi*var)/(4 - pi)) where 

% 'var' is the variance you specify.  (So unity variance 

% produces a mean of 1.91, for example).  The mean of an 

% exponential sequence is the square root of the specified 

% variance. 

% 

% For the "shifted" versions of Rayleigh and exponential, 

% the mean of the sequence is calculated and subtracted. 

% This is a quick and dirty way to provide a zero-mean but 

% asymmetric sequence.  In both cases the variance remains 

% as specified. 

% 

% The "two-sided" version of a Rayleigh sequence is created 

% by generating a Rayleigh sequence and negating every other 

% value.  It just provides another zero-mean, symmetric 

% sequence {variance argument here is no longer valid). 

% 

% As in the original rpiid, only the first character of 

% in_type is checked. 

% Don Green 

% NPS/DoD Distance Learning 

% 24 April 2000/last updated 9 June 2000 

pdf = in_type(1); 

% Uniform distribution uses MATLAB's built-in rand function, 

% and subtracts 0.5 to make it zero-mean.  The sequence is 

% then multiplied by the square root of 12 * (the desired 

% variance) which sets the variance. 

% 

% Normal (Gaussian) distribution uses MATLAB's built-in 

% randn function (which is already zero-mean, unity variance) 

% Multiplying the sequence by the square root of the desired 

% variance sets the variance to the correct value. 
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% 

% 

% 

% 

Cr 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

9; 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

Laplace distribution is generated by producing two independent 
exponential distributions and subtracting one from the other. 
The scale parameter of the Laplace distribution, b, is 
generated by taking the square root of half the desired 
variance. This parameter b is then used to generate the 
exponential distributions as -b*log(R) where R is a standard 
rectangular distribution and log is the natural logarithm. 
Perform the subtraction, and you have a Laplace distribution. 

A Rayleigh distribution may be generated by taking the 
square root of the sum of the squares of two Normal 
distributions. The b which is used to multiply the 
Normal sequences is derived from the expression for the 
variance of a Laplace sequence (variance = (2 - pi/2)*bA2). 
For the modified version below, a for loop is then executed 
which negates the sign on every other data point to provide 
a zero-mean sequence. The "shifted version" is simply an 
ordinary Rayleigh distribution, with the mean subtracted, 
to provide an asymmetric, zero-mean sequence (variance is 
still as specified). 

Exponential distribution is generated as described in Laplace, 
above, except that the b used in -b*log(R) is simply the 
square root of the desired variance. As with the Rayleigh 
sequence, if a "shifted" version is desired the mean is 
calculated and subtracted. This forces the mean to zero 
and leaves the variance as desired. 

Most of the formulae above have been lifted from 
- Statistical Distributions-, 2nd Ed. by Evans, Hastings, 
and Peacock. 

i f  ( (pdf  == l u l )  1 (pdf == 'Ul)) 

bution 

uni = rand(nsamp,l) - 0.5; 

seq = uni. *sqrt (12*var) ; 
clear uni; 

% Uniform/rectangular distri- 

118 

% Laplace distribution is generated by producing two independent 

% exponential distributions and subtracting one from the other. 

% The scale parameter of the Laplace distribution, b, is 

% generated by taking the square root of half the desired 

% variance.  This parameter b is then used to generate the 

% exponential distributions as -b*log(R) where R is a standard 

% rectangular distribution and log is the natural logarithm. 

% Perform the subtraction, and you have a Laplace distribution. 

A Rayleigh distribution may be generated by taking the 

square root of the sum of the squares of two Normal 

distributions.  The b which is used to multiply the 

Normal sequences is derived from the expression for the 

variance of a Laplace sequence (variance = (2 - pi/2)*b^2). 

For the modified version below, a for loop is then executed 

which negates the sign on every other data point to provide 

%  a zero-mean sequence.  The "shifted version" is simply an 

%  ordinary Rayleigh distribution, with the mean subtracted, 

%  to provide an asymmetric, zero-mean sequence (variance is 

%  still as specified). 

% Exponential distribution is generated as described in Laplace, 

% above, except that the b used in -b*log(R) is simply the 

% square root of the desired variance.  As with the Rayleigh 

% sequence, if a "shifted" version is desired the mean is 

% calculated and subtracted.  This forces the mean to zero 

% and leaves the variance as desired. 

% 

% Most of the formulae above have been lifted from 

% _Statistical Distributions_, 2nd Ed. by Evans, Hastings, 

% and Peacock. 

if ((pdf == 'u') I (pdf == 'U')) 

bution 

uni = rand(nsamp,1) - 0.5; 

seq = uni.*sqrt(12*var); 

clear uni; 

% Uniform/rectangular distri- 
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elseif ((pdf == I n t )  I (pdf == INT)) 

norm = randn (nsamp ,1) ; 

seq = norm. *sqrt (var) ; 
clear norm; 

elseif ((pdf == (1') I (pdf == I L r ) )  

b = sqrt (var/2) ; 
unil = rand(nsamp, 1) ; 
uni2 = rand(nsamp, 1) ; 
expl = -b*log(unil) ; 
exp2 = -b*log(uni2) ; 
seq = expl - exp2; 
clear b unil uni2 expl exp2; 

elseif ((pdf == It') I (pdf == I T t ) )  

b = sqrt(var/(2 - pi/2)); 

norml = randn (nsamp, 1) ; 
norm2 = randn (nsamp, 1) ; 
norm1 = norml. * (b) ; 
norm2 = norm2. * (b) ; 
seq = sqrt(norml.^2 + norm2.^2); 
fo r  index = l:nsamp, % This stuff is for a "two-sided Rayleigh" pdf 

if (mod(index,2) == 0) 

seq(index,l) = seq(index,l) * -1; 
end 

end 

clear norml norm2 b index; 

elseif ((pdf == Irl) 1 (pdf == I R ) ) )  

b = sqrt(var/(2 - pi/2)); 
norml = randn (nsamp , 1) ; 
norm2 = randn (nsamp , 1) ; 
norm1 = norml. * (b) ; 
norm2 = norm2.* (b) ; 
seq = sqrt(norm1.*2 + norm2.^2); 
clear norml norm2 b; 

elseif ((pdf == I s ! )  I (pdf == I S ' ) )  % Shifted Rayleigh 

b = sqrt(var/(2 - pi/2)); 

norml = randn (nsamp, 1) ; 
norm2 = randn (nsamp, 1) ; 
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% Normal/Gaussian distribution 

% Laplace distribution 

% I8Two-sided" Rayleigh 

5; distribution 

% Rayleigh distribution 

elseif {(pdf == 'n') | (pdf == 'N'))      % Normal/Gaussian distribution 

norm = randn(nsamp,1); 

seq = norm.*sqrt(var); 

clear norm; 

elseif ((pdf == '1') | (pdf == 'L'))      % Laplace distribution 

b = sqrt(var/2); 

unil = rand(nsamp,1); 

uni2 = rand(nsamp,1); 

expl = -b*log(unil); 

exp2 = -b*log(uni2); 

seq = expl - exp2; 

clear b unil uni2 expl exp2; 

elseif ((pdf == 't') | (pdf =='!'))      % "Two-sided" Rayleigh 

b = sqrt(var/(2 - pi/2)); % distribution 

norml = randn(nsamp,1); 

norm2 = randn(nsamp,1); 

norml = norml.*(b); 

norm2 = norm2.*(b); 

seq = sqrt(norml.*2 + norm2.*2); 

for index = l:nsamp,  % This stuff is for a "two-sided Rayleigh" pdf 

if (mod(index,2) == 0) 

seq(index,1) = seq(index,1) * -1; 

end 

end 

clear norml norm2 b index; 

elseif ((pdf == 'r') | (pdf == 'R'))      % Rayleigh distribution 

b = sqrt(var/(2 - pi/2)); 

norml = randn(nsamp,1); 

norm2 = randn(nsamp,1); 

norml = norml.*(b); 

norm2 = norm2.*(b); 

seq = sqrt (norml. *2 + norm2.''2); 

clear norml norm2 b; 

elseif ((pdf == 's') |  (pdf == 'S'))  % Shifted Rayleigh 

b = sqrt(var/(2 - pi/2)); 

norml = randn(nsamp,1); 

norm2 = randn(nsamp,1); 
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norml = norml. * (b) ; 
norm2 = norm2. * (b) ; 
seq = sqrt (norml. *2 + norm2. ̂2) ; 
seq = seq - mean(seq) ; 
clear norml norm2 b; 

elseif ((pdf == !el) I (pdf == ! E l ) )  % Exponential distribution 

b = sqrt(var1; 

uni = rand (nsamp, 1) ; 

seq = -b*log(uni) ; 

clear b uni; 

elseif ((pdf == ' h ' )  I (pdf == '€Ir)) % Shifted exponential 

b = sqrt(var); % distribution 

uni = rand(nsamp, 1) ; 

exp = -b*log(uni) ; 
seq = exp - mean(exp) ; 
clear b uni; 

else 

disp('Error: in-type ',in-type, not recognized.'); 

end 

C. MATLAB script from Chapter I11 

% This script was used to generate the theoretical values of the 
% colored signals (i.e., those produced when the 
% mean-shifted exponential and mean-shifted Rayleigh distributed signals 
% were passed through a filter before their bispectra were estimated.) 
% It was not used to generate theoretical values for the Gaussian and 
% uniform-distributed signals, as the theoretical values in those two 
% cases were zero across the board. 
% The "expected_valT1 parameter was changed by hand to 5.04739 for the 
% mean-shifted Rayleigh case, and the range of the l'indexT' and "om" 
% indices was changed for the larger bispectral estimates (i.e., 
% 512x512)  

beta=O. 1; 

expected_val=16; 

j 
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norml = norml.*(b); 

norm2 = norm2.*(b); 

seq = sqrt (norml. "^2 + norm2 . *2) ; 

seq = seq - mean(seq); 

clear norml norm2 b; 

elseif ((pdf == 'e') | (pdf == 'E')) 

b = sqrt(var); 

uni = rand(nsamp,1); 

seq = -b*log(uni); 

clear b uni; 

elseif ((pdf == 'h') | (pdf == 'H')) 

b = sqrt(var); 

uni = rand(nsamp,1); 

exp = -b*log(uni); 

seq = exp - mean(exp); 

clear b uni; 

else 

disp('Error:  in_type ',in_type,' not recognized.'); 

end 

% Exponential distribution 

% Shifted exponential 

% distribution 

C. MATLAB script from Chapter III 

% This script was used to generate the theoretical values of the 

% colored signals (i.e., those produced when the 

% mean-shifted exponential and mean-shifted Rayleigh distributed signals 

% were passed through a filter before their bispectra were estimated.) 

% It was not used to generate theoretical values for the Gaussian- and 

% uniform-distributed signals, as the theoretical values in those two 

% cases were zero across the board. 

% The "expected__val" parameter was changed by hand to 5.04739 for the 

% mean-shifted Rayleigh case, and the range of the "index" and "om" 

% indices was changed for the larger bispectral estimates (i.e., 

% 512x512) 

beta=0.1; 

expected_val=16; 

j 
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oml=linspace (-pi,pir 129) ; 

om2=linspace (-pi, pi, 129) ; 

€or indexl=l:128 

for index2=1:128 

% 

% 

oml= (index1/128) - (0.5+1/128) ; 

om2- (index2/128) - (0.5+1/128) ; 

element~=l/(~-(beta*exp(j*(oml(indexl)+om2~index2~~~~~; 

element2=1/ (1- (beta*exp ( -  j *om1 (indexl) ) ) ) ; 
element3=1/ (1- (beta*exp(-j*om2 (index21 1 )  1 ; 

output(indexl,index2)=conj (element~)*element2*element3*expected~val; 

end 

end 
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oml=linspace(-pi,pi,129); 

om2=linspace{-pi,pi,129); 

for indexl=l:128 

for index2=l:12 8 

% oml={indexl/128)-(0.5 + 1/128) ; 

%      om2=(index2/128)-(0.5+1/128); 

elementl=l/(1-(beta*exp(j*(oml(indexl)+om2(index2))))); 

element2=l/(1-(beta*exp(-j*oml(indexl)))); 

element3=l/(1-(beta*exp(-j*om2(index2)))); 

output(indexl,index2)=conj(elementl)*element2*element3*expected_val; 

end 

end 
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